

DEMANDE DE DEROGATION AU TITRE DE L'ARTICLE L121-5 DU CODE DE L'URBANISME

CONSTRUCTION D'UNE NOUVELLE STATION D'EPURATION A LANMODEZ

Table des matières

1. INTRO	DUCTION	5
1.1. PR	REAMBULE	5
1.2. EN	MPLACEMENT DU PROJET	7
1.3. ID	ENTIFICATION DU DEMANDEUR	11
1.4. PC	PULATION ET HABITAT	12
1.5. AC	CTIVITES ECONOMIQUES	12
1.6. UI	RBANISME	12
1.7. PR	OTECTIONS EXISTANTES	16
1.8. EV	OLUTION PREVISIBLE DE LA POPULATION	18
2. ANAL	YSE DES CONDITIONS D'ASSAINISSEMENT DES EAUX USEES	18
2.1. LA	A STATION D'EPURATION ACTUELLE	18
2.2. LE	E RESEAU DE COLLECTE	22
3. DESCI	RIPTION DU PROJET	24
3.1. ID	ENTIFICATION DU SITE DU PROJET	24
3.2. NA 26	ATURE, CONSISTANCE, VOLUME ET OBJET DES TRAVAUX PRO)JETES
3.2.1.	L'outil épuratoire	26
3.2.2.	Le rejet des eaux traitées	29
3.2.3.	Les normes de rejet	29
3.2.4.	La gestion des boues	35
3.2.5.	Continuité de service	35
3.2.6.	Planning prévisionnel des travaux	36
	ENTATION DU PROJET JUSTIFIANT LA DEMANDE DE DEROGAT E L121-5	
4.1. RA	APPEL DU CADRE REGLEMENTAIRE	37
4.1.1.	Cadre juridique lié à la Loi Littoral (Chapitre VI du code de l'urbanisme)	37
4.1.2.	Article L121-5 du code de l'urbanisme	40
4.1.3.	Article L 414-1 et suivant du code de l'environnement	41
4.1.4.	Synthèse	41
	ATURE DES EQUIPEMENTS ENVISAGES ET CARACTERISTIQUE MPLANTATION	
4.2.1.	Localisation du site d'implantation du projet	42
4.2.2.	Equipements envisagés	44
4.2.3.	Concertation	45

	ALYSE DU SYSTEME D'ASSAINISSEMENT AU NIVEAU COMMUN MMUNAL	
4.3.1.	Analyse à l'échelle communale	
4.3.2.	Analyse à l'échelle intercommunale	47
	STIFICATION DU CARACTERE IMPERATIF DE LA LOCALISATIO	
	PACT SIGNIFICIATIFS DU PROJET SUR LE SITE ET ME RICES ASSOCIEES	
4.5.1.	Incidences en phase travaux	52
4.5.2.	Incidences en phase exploitation	52
4.5.3.	Incidences sur le site d'implantation de la station	54
4.5.4.	Incidences paysagères	56
4.5.5.	Incidences sonores	61
4.5.6.	Incidences olfactives	61
4.5.7.	Evaluation des incidences sur les sites Natura 2000	61
	SPECTER LA CONDITION TENANT A L'ABSENCE DE SATION NOUVELLE	
	ET QUALITES PRECISES ET COMPLETES DU OU DES AUTEU T DES ETUDES QUI ONT CONTRIBUE A SA REALISATION	
ANNEXES.		66
ANNEXE 1	PLAN DE MASSE DU PROJET	67
ANNEXE 2	NOTICE D'INTEGRATION PAYSAGERE	69
FIGURE	ES	
_	rcelle et emprise du projet	
	optique de le nouvelle station d'épuration de Lanmodez	
-	ssin versant du milieu récepteur (ruisseau de Kernassac'h)sin versant du Bouillenou qui rejoint le Kernassac'h à son exutoire	
	sin versant du Trieux (rejoint en mer par le Kernassac'h et le Bouillenou).	
	tégration paysagère du projet	
	an en coupe du projet	
Figure 8 Parc	celle du projet	51
TABLE		
	ude d'acceptabilité au droit du rejet avec normes ministérielles, normes pro	-
-	ces attenduesude d'acceptabilité à l'exutoire du Kernassac'h	
	ableau d'acceptabilité à l'aval de la confluence avec le Bouillenou	

Tableau 4 Acceptabilité à l'aval de la confluence avec le Trieux	34
Tableau 5 Acceptabilité à l'aval de la confluence avec le Trieux	62
CARTES	
carte 1 Localisation de la commune de Lanmodez	8
carte 2 Localisation de la station d'épuration actuelle de Lanmodez	9
carte 3 Localisation de la parcelle du projet	10
Carte 4 :Classement au PLU de la parcelle du projet	
carte 5 Zones 2AU du bourg au PLU de 2005 (gelées)	14
carte 6 Zones 1 AU et U du bourg au PLU de Lanmodez	15
Carte 7 : Zonage de protection à proximité du projet	17
Carte 8 : Réseaux et postes de relèvement	
carte 9 Localisation du projet	25
carte 10 Localisation de la parcelle du projet	43
Carte 11 Situation géographique des zones potentielles	46
carte 12 Communes littorales voisines de Lanmodez et leurs stations d'épuration	48
carte 13 Commune non littorale la plus proche : Pleumeur-Gautier	50
carte 14 Zones Natura 2000 à Lanmodez	63

1. INTRODUCTION

1.1. PREAMBULE

La station d'épuration (STEP) de Lanmodez est une station de type filtre à sable, mise en service en 2006 et d'une capacité de 120 équivalents habitants (EH) soit 7,2 kg de DBOs/j et 18 m³/j.

La STEP souffre de dysfonctionnements sur le filtre à sable depuis sa mise en service. L'ouvrage a été mal posé. Les filtres à sable sont colmatés, ce qui rend le traitement au sein du massif quasi inexistant. La qualité des effluents en sortie de STEP est donc mauvaise.

Les voisins se plaignent de mauvaises odeurs. Une école et un gîte de randonneurs se situent à proximité immédiate de la STEP.

Les études menées par LTC ont permis de proposer aux services de l'Etat un projet de réalisation d'une filière de type boues activées.

La nouvelle station d'épuration de Lanmodez sera dimensionnée pour recevoir une charge organique de **180 EH soit 10,8 kg DBO**₅/**j**. La nouvelle STEP est déplacée par rapport à l'existante afin d'être alimentée en gravitaire (pas de poste de relevage d'entrée prévu) et de récupérer quelques habitations supplémentaires.

Le rejet sera réalisé en direct vers le ruisseau situé à proximité de l'emplacement de la nouvelle STEP, en aval du clarificateur.

En raison de la situation du site de la nouvelle station d'épuration sur la commune littorale de Lanmodez, la réalisation des travaux projetés est soumise aux dispositions de la loi Littoral du 3 janvier 1986.

L'emplacement retenu pour le nouveau système n'est pas situé en continuité de l'urbanisation existante.

C'est pourquoi Lannion-Trégor Communauté souhaite faire une demande de dérogation aux dispositions de la Loi Littoral afin de pouvoir engager les travaux de construction de la nouvelle station d'épuration de Lanmodez et ainsi supprimer les dysfonctionnements et les nuisances engendrés par le système actuel.

Le passage à une filière boues activées va permettre de traiter une charge de pollution plus importante et d'assurer un traitement plus poussé.

Le site du projet se trouve :

- Hors site Natura 2000.
- Hors site inscrit,
- Hors ZNIEFF,
- Hors zone humide.

Il se situe:

- En discontinuité de l'urbanisation existante,
- Dans une coupure d'urbanisation,
- Hors des espaces proches du rivage,

- En dehors d'un espace remarquable du littoral,
- En dehors de la bande des 100 mètres du littoral.

Les nouveaux ouvrages seront conçus afin de limiter les nuisances sonores, olfactives et visuelles pour le voisinage qui se situe à moins de 100 mètres de la future station.

Le projet se limite à la construction d'ouvrages nécessaires au traitement des eaux usées qui ne provoqueront pas de nuisance. Il constitue une extension limitée et ne porte atteinte à aucun espace remarquable du littoral.

La commune de Lanmodez ne dispose pas de zone à urbaniser, ni de zone d'activité pouvant accueillir la nouvelle station d'épuration (superficie insuffisante ou parcelles destinées à l'habitation, sites trop éloignés des réseaux actuels et nécessitant la mise en place de poste de refoulement).

Les communes voisines de Lézardrieux et Pleubian sont également soumises à la loi Littoral et aux mêmes contraintes réglementaires pour leur restructuration ou construction de station d'épuration. Leurs stations d'épuration sont éloignées des réseaux d'eaux usées de Lanmodez ce qui engendrerait des coûts excessifs de travaux et un risque de formation d'H₂S. Elles sont dimensionnées pour recevoir les eaux usées de leurs communes. De plus, le système d'assainissement de Pleubian dysfonctionne et ne peut en l'état accueillir les charges supplémentaires d'une autre commune sans travaux importants.

La commune non littorale la plus proche (Pleumeur-Gautier) ne dispose pas d'une station d'épuration de capacité suffisante (elle est surchargée hydrauliquement). Cette station fait l'objet d'un rapport de manquement administratif et se situe trop loin de la station actuelle de Lanmodez. Son rejet actuel et futur dégrade déjà le milieu récepteur insuffisant. La commune de Pleumeur-Gautier est également trop éloignée des réseaux de Lanmodez pour envisager un transfert.

Le présent dossier a pour objet de demander l'autorisation de réaliser les travaux de construction de la nouvelle station d'épuration de Lanmodez en discontinuité de l'urbanisation existante et au sein d'une coupure d'urbanisation.

1.2. EMPLACEMENT DU PROJET

La commune de Lanmodez est située dans le département des Côtes d'Armor à 30 kilomètres au Nord/Est de Lannion et est intégrée à Lannion-Trégor Communauté qui regroupe 56 autres communes. Le territoire couvre une superficie de 415 hectares.

La nouvelle station sera implantée sur la parcelle A 481. La parcelle est zonée « A » au Plan Local d'Urbanisme de la commune. Sont admis en zone A « les ouvrages et installations techniques d'intérêt collectif (téléphone public, assainissement, réseaux d'énergie... ».

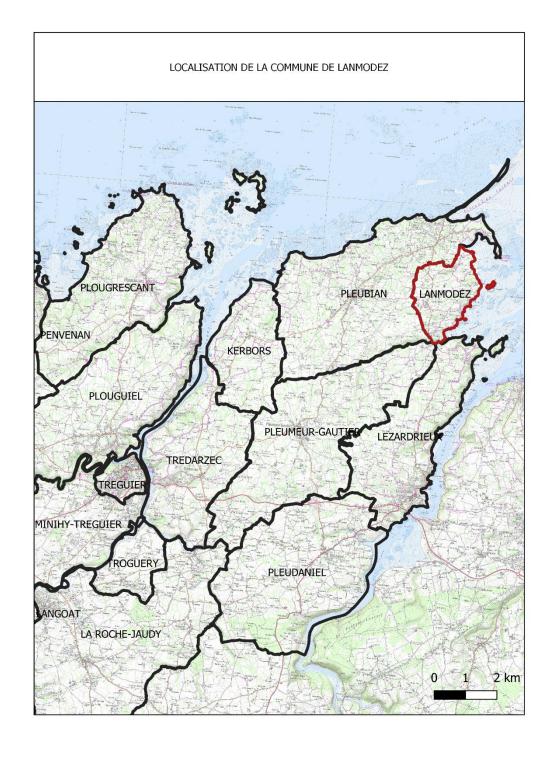



Figure 1 : Parcelle et emprise du projet

carte 1 Localisation de la commune de Lanmodez

carte 2 Localisation de la station d'épuration actuelle de Lanmodez

carte 3 Localisation de la parcelle du projet

1.3. IDENTIFICATION DU DEMANDEUR

La compétence assainissement est détenue par Lannion-Trégor Communauté. A ce titre, le portage du présent dossier est assuré par Lannion-Trégor Communauté.

LANNION-TREGOR COMMUNAUTE

1, rue Monge - BP 10761 22307 Lannion Cedex N° SIRET : 200 065 928 00018

1.4. POPULATION ET HABITAT

La population administrative de la commune de Lanmodez en 2018 était de 410 habitants. La variation annuelle de la population est de -1,6% depuis 2013.

La taille moyenne des ménages est de 2,09 habitant par résidence.

Sur 356 logements, 55% sont des résidences principales.

La commune connait un rythme de construction moyen de 4 logements par an sur la période 2006-2016.

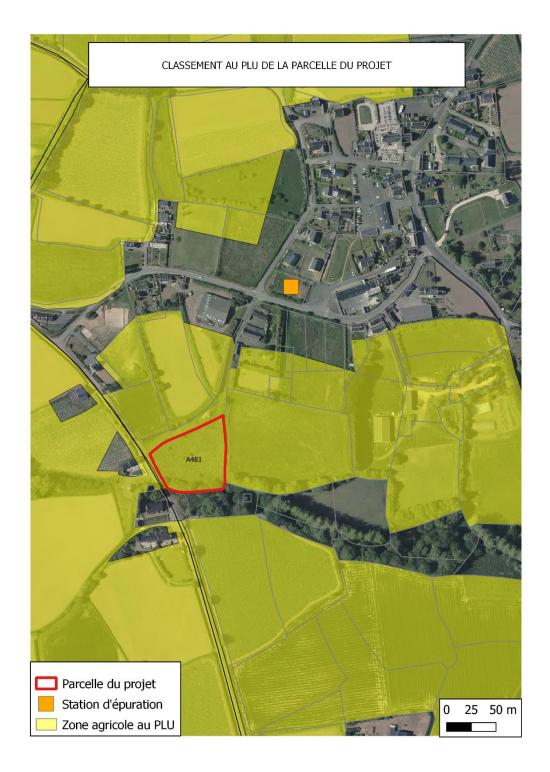
(Source : INSEE, SCoT)

1.5. ACTIVITES ECONOMIQUES

L'activité agricole est dominante sur le territoire de Lanmodez. L'activité principale est le maraîchage. Une activité aquacole est présente en bordure de littoral. Les secteurs secondaire et tertiaire sont très peu présents sur la commune.

(Source: PLU)

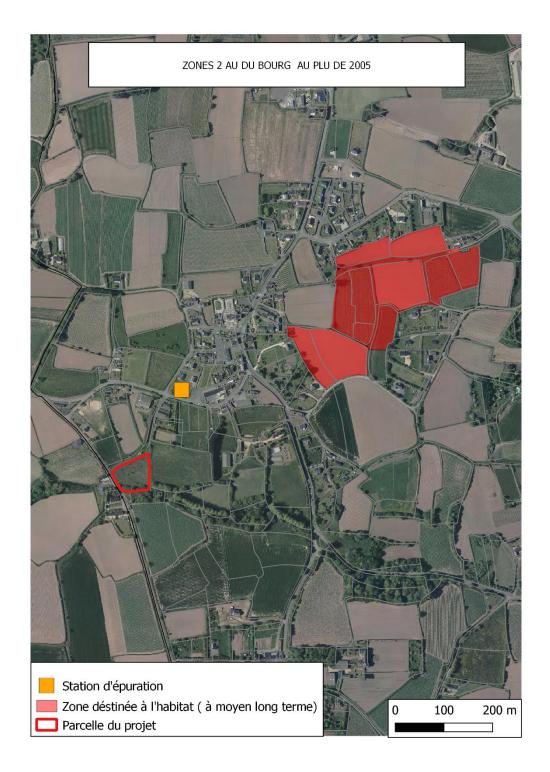
1.6. URBANISME


Le PLU de la commune de Lanmodez a été approuvé en 2005.

La nouvelle station sera implantée sur la parcelle A 481. La parcelle est zonée « A » au Plan Local d'Urbanisme de la commune. Sont admis en zone A « les ouvrages et installations techniques d'intérêt collectif (téléphone public, assainissement, réseaux d'énergie... ».

Les zones 2 AU du PLU de la commune ont été gelées, elles ne pourront pas être construites.

La commune dispose seulement d'une zone 1 AU au bourg à vocation d'habitat ce qui limite fortement son potentiel de développement en attendant le Plan Local d'Urbanisme Intercommunal de Lannion-Trégor Communauté. Quelques petits secteurs en zone urbanisée du bourg peuvent encore accueillir des logements. Le développement la commune pourra se faire à l'ouest du bourg. Le SCoT du Trégor prévoit la production de 50 logements à Lanmodez.



Carte 4 :Classement au PLU de la parcelle du projet



carte 5 Zones 2AU du bourg au PLU de 2005 (gelées)

carte 6 Zones 1 AU et U du bourg au PLU de Lanmodez

1.7. PROTECTIONS EXISTANTES

Le site du projet se trouve :

- Hors site Natura 2000,
- Hors site inscrit,
- Hors ZNIEFF,
- Hors zone humide.

Carte 7 : Zonage de protection à proximité du projet

1.8. EVOLUTION PREVISIBLE DE LA POPULATION

Le SCoT du Trégor a été approuvé en conseil communautaire le 4 février 2020.

Il est prévu la création de 50 logements à horizon 2040 sur la commune de Lanmodez.

Le zonage d'assainissement prévoit également le raccordement du secteur de Bel Air actuellement en assainissement individuel qu'il est possible de raccorder gravitairement au nouveau réseau jusqu'à la nouvelle station d'épuration. Ce secteur représente 11 branchements.

Compte tenu des prévisions du SCoT (50 logements), des branchements existants et du raccordement du secteur de Bel Air, la future station d'épuration a été dimensionnée à 180 Equivalents Habitant (EH).

2. ANALYSE DES CONDITIONS D'ASSAINISSEMENT DES EAUX USEES

Lannion-Trégor Communauté assure en régie la gestion de l'assainissement collectif et non collectif.

Les habitations non raccordées au réseau collectif d'assainissement relève de l'Assainissement Non Collectif, dont le contrôle est assuré par le Service Public de l'Assainissement Non Collectif (SPANC).

2.1. LA STATION D'EPURATION ACTUELLE

La station d'épuration de Lanmodez est de type filtre à sable. Elle a été mise en service en 2006 et a une capacité théorique de 120 EH. Elle se situe au bourg de Lanmodez à proximité d'habitations, d'une école et d'un gîte qui en subissent les nuisances olfactives. Elle se situe sur la parcelle AB 166.

Il s'agit d'une STEP de type filtre à sable, avec un poste de relevage en entrée, une fosse toutes eaux et un décolloïdeur.

La STEP souffre de dysfonctionnements sur le filtre à sable depuis sa mise en service, il s'avère que l'ouvrage a été mal posé. Les filtres à sable sont colmatés, ce qui rend le traitement au sein du massif quasi inexistant. La qualité des effluents en sortie de la STEP est donc mauvaise.

Photo 1 STEP actuelle de Lanmodez

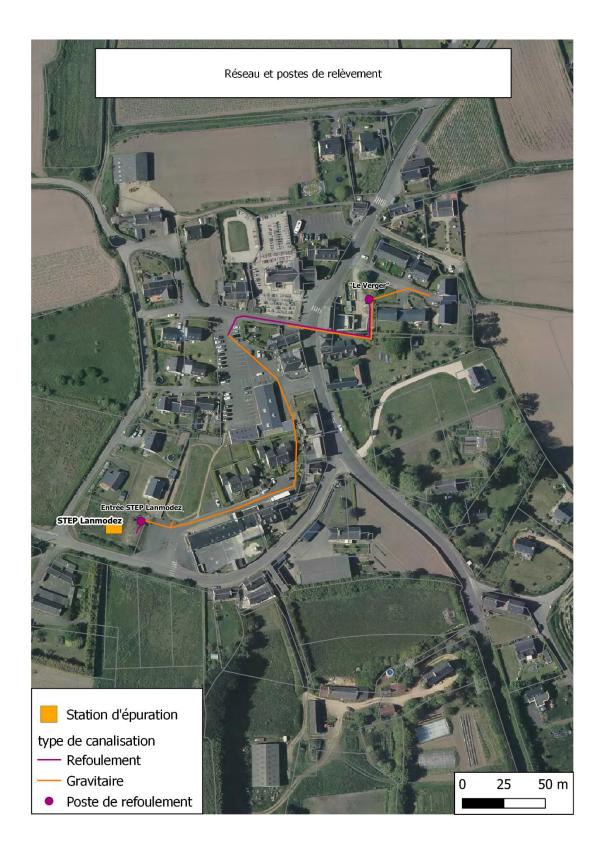
La station d'épuration de Lanmodez ne dispose pas d'un arrêté préfectoral spécifique car elle a une capacité nominale inférieure à 200 EH.

La commune de Lanmodez compte actuellement 39 branchements raccordés à l'assainissement collectif.

La station est actuellement chargée à environ 50% en organique et 39% en hydraulique selon les derniers bilans du SATESE.

Ci-dessous quelques photos de la station d'épuration actuelle.

Photo 2 Photos de la station d'épuration actuelle de Lanmodez


2.2. LE RESEAU DE COLLECTE

Le réseau de collecte de la commune de Lanmodez est de type séparatif.

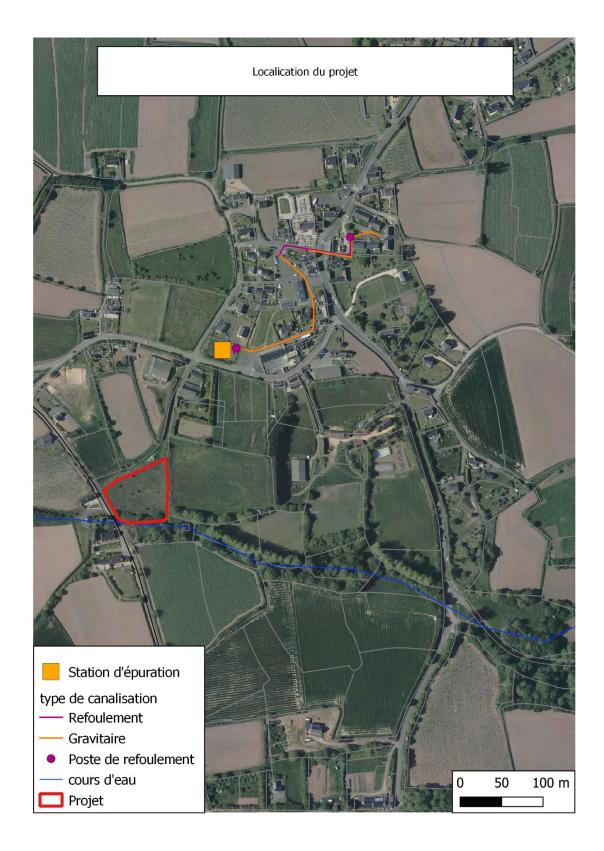
Le réseau est constitué de :

- 318,7 mètres de réseau gravitaire,
- 124 mètres de réseau refoulé,
- De deux postes de relevage équipés de télé alarme :
 - o 1 PR en entrée station et
 - o 1 PR dans le Bourg,
- 39 branchements.

Carte 8 : Réseaux et postes de relèvement

3. DESCRIPTION DU PROJET

3.1. IDENTIFICATION DU SITE DU PROJET


Le projet concerne la construction d'une nouvelle station d'épuration sur la commune de Lanmodez.

La nouvelle station sera implantée sur la parcelle A 481.

Le rejet serait réalisé en direct vers le ruisseau situé à proximité de l'emplacement de la nouvelle STEP, en aval du clarificateur.

La filière proposée est de type boues activées.

carte 9 Localisation du projet

3.2. NATURE, CONSISTANCE, VOLUME ET OBJET DES TRAVAUX PROJETES

3.2.1. <u>L'outil épuratoire</u>

La nouvelle STEP sera de type boues activés et sera dimensionnée sur une charge de 180 EH et un volume journalier de 56 m³/j.

Le débit de pointe en temps de pluie sera de 6 m³/h et la charge organique en entrée sera de 10,8 kgDBO₅/j.

Caractéristiques des ouvrages :

- Dégrilleur droit en entrée
- Canal de comptage à section exponentielle en entrée
- Boues activées
 - o Bassin d'aération
 - o Dégazeur
 - o Clarificateur
- Canal de comptage à seuil triangulaire en sortie
- Déshydratation des boues par lits de séchage plantés de roseaux
- Système d'injection de chlorure ferrique pour traitement de la pollution phosphorée

Le plan de masse du projet est consultable en annexe 1.

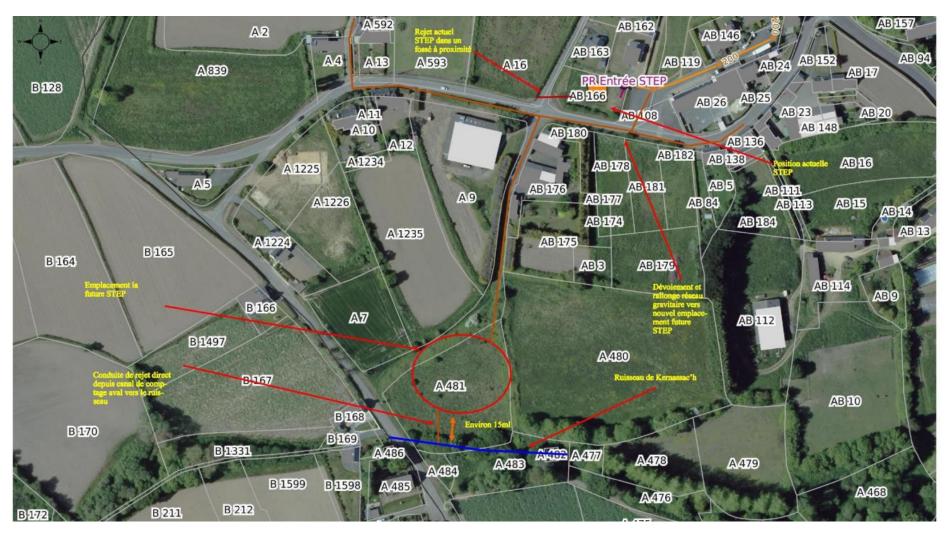


Photo 3 Plan général du projet

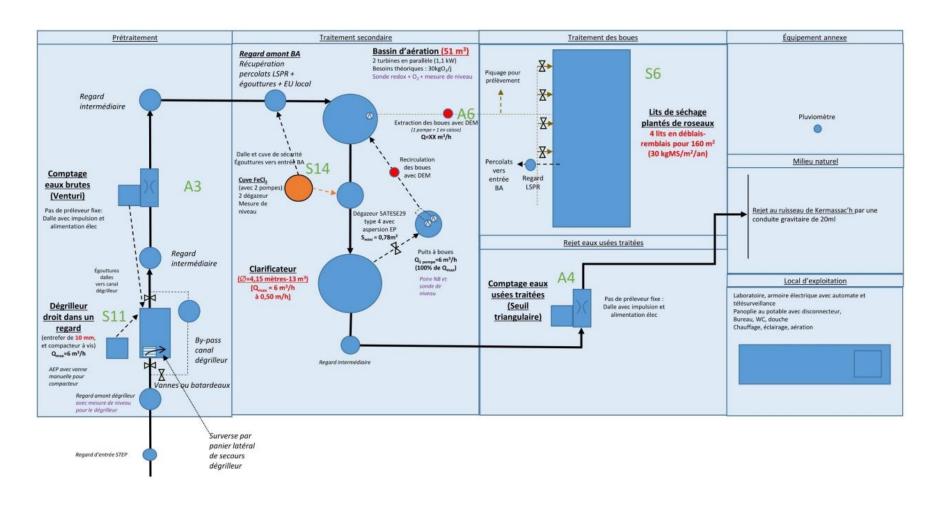


Figure 2 Synoptique de le nouvelle station d'épuration de Lanmodez

3.2.2. Le rejet des eaux traitées

La nouvelle station d'épuration est dimensionnée en prenant en compte les charges arrivant actuellement à la station et les perspectives de développement de la commune (SCoT et étude de zonage d'assainissement).

Les débits sont donc amenés à augmenter progressivement. L'impact sur le milieu récepteur a été calculé à horizon 30 ans, à capacité maximale et dans une situation critique (situation quinquennale sèche et par temps de pluie).

Compte tenu du fonctionnement actuel de la station d'épuration, le projet aura un impact positif sur la qualité de l'eau rejetée.

3.2.3. Les normes de rejet

Les normes de rejets proposées sont les suivantes :

DBO₅: 20 mg/L

DCO: 70 mg/L

MES: 30 mg/L

NTK: 10 mg/L

N-NH₄: 10 mg/L

NGL: 15 mg/L

Pt: 15 mg/L ou 1,5 mg/L avec traitement au chlorure ferrique.

Figure 3 Bassin versant du milieu récepteur (ruisseau de Kernassac'h)

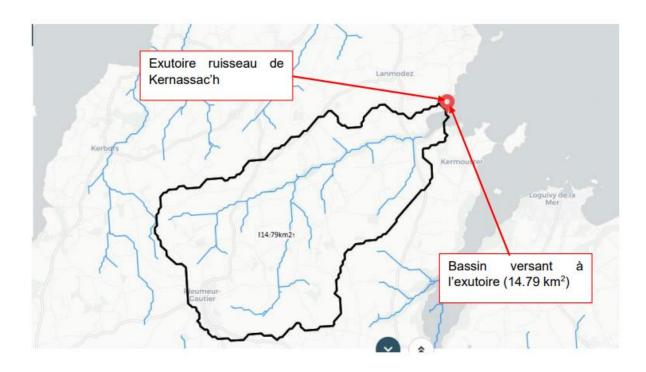


Figure 4 Bassin versant du Bouillenou qui rejoint le Kernassac'h à son exutoire

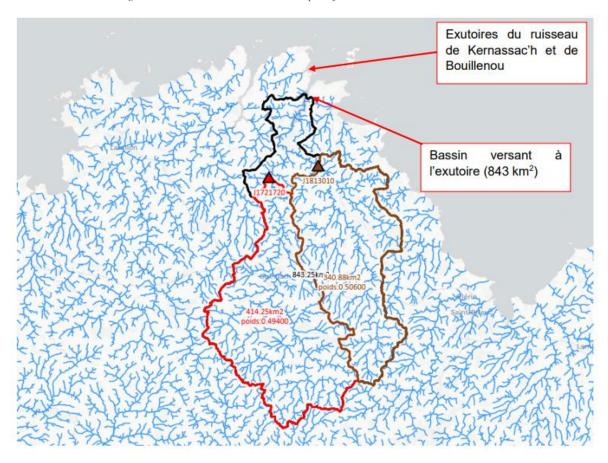


Figure 5 Bassin versant du Trieux (rejoint en mer par le Kernassac'h et le Bouillenou)

					4.1				Avec proposition do normos (DDOF, DCO at MES aculament)										
				Ave	c arrêté mi	<u>nisteriel</u>		Norma de	a raiat da l	Avec proposition de normes (DBO5, DCO et MES seulement) a station d'épuration									
	DBO5	DCO	MES	NTK	N-NH₄	NGL	Pt	E. Coli	e rejet de i	DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt	E. Coli		
	(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)	(ufc/100mL)		(mgO ₂ /L)		(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)	(ufc/100mL)		
Normes	35	200	35	10,00	10,00	15,00	15,00	100000		20	70	30	10,00	10,00	15,00	15,00	100000		
								Concentration	ns théorig	ues du mil	ieu récepte	ur							
	DBO5	DCO	MES	NTK	N-NH₄	NGL	Pt		Débit	DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt		Débit	
	(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)		STEP	(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)		STEP	
Janvier	2.8	17.5	3.8	0.9	0.45	1.30	0,62	3981	(m³/jour) 26	2.2	12.4	3.6	0.9	0,45	1.30	0,62	3981	(m³/jour) 26	
Février	2,7	16.7	3.6	0,8	0.40	1.23	0,55	3523	26	2,1	12,1	3.5	0.8	0,40	1.23	0,55	3523	26	
Mars	2,9	18,2	3,9	0,9	0.48	1.34	0.67	4315	26	2,3	12,6	3.7	0,9	0,48	1,34	0,67	4315	26	
Avril	3,4	21,0	4,4	1,0	0,62	1,55	0,89	5775	26	2,6	13,5	4,1	1,0	0,62	1,55	0,89	5775	26	
Mai	4,0	24,2	4,9	1,2	0,79	1,80	1,15	7492	26	2,9	14,5	4,6	1,2	0,79	1,80	1,15	7492	26	
Juin	5,3	31,5	6,2	1,6	1,17	2,34	1,72	11299	26	3,6	16,8	5,6	1,6	1,17	2,34	1,72	11299	26	
Juillet	7,0	41,2	7,8	2,1	1,68	3,07	2,48	16416	26	4,5	19,8	7,0	2,1	1,68	3,07	2,48	16416	26	
Août	8,7	51,1	9,5	2,6	2,20	3,82	3,26	21628	26	5,5	23,0	8,4	2,6	2,20	3,82	3,26	21628	26	
Septembre	9,4	54,9	10,2	2,7	2,40	4,10	3,57	23652	26	5,9	24,2	9,0	2,7	2,40	4,10	3,57	23652	26	
Octobre	8,0	46,8	8,8	2,3	1,98	3,49	2,93	19381	26	5,1	21,6	7,8	2,3	1,98	3,49	2,93	19381	26	
Novembre	5,3	31,4	6,2	1,6	1,17	2,34	1,71	11282	26	3,6	16,8	5,6	1,6	1,17	2,34	1,71	11282	26	
Décembre	3,4	20,6	4,3	1,0	0,60	1,52	0,86	5576	26	2,5	13,3	4,0	1,0	0,60	1,52	0,86	5576	26	
QMNA5	9,6	56,2	10,4	2,8	2,47	4,20	3,67	24328	2.0		24.0	0.0		2.47	4.20	3,67	24220	2.0	
	3,0	30,2	10,4	2,0	2,47	4,20	3,67	24320	26	6,0	24,6	9,2	2,8	2,47	4,20	3,07	24328	26	
	3,0				dues (sans			ferrique)			Avec p			dues (avec				20	
		Avec p	erformar	nces attend		traitement	chlorrure	ferrique) Norme de	e rejet de la	a station d	Avec p	erformar	nces attend	lues (avec	traitement	chlorrure	ferrique)	26	
	DBO5	Avec p	MES	NTK	N-NH ₄	traitement NGL	chlorrure Pt	<u>Norme de</u> E. Coli		a station d'	Avec p épuration DCO	MES	NTK	N-NH ₄	traitement NGL	chlorrure Pt	ferrique) E. Coli	26	
	DBO5 (mgO ₂ /L)	DCO (mgO ₂ /L)	MES (mg/L)	NTK (mgN/L)	N-NH ₄ (mgNH ₄ /L)	NGL (mgN/L)	Pt (mgP/L)	Norme de E. Coli (ufc/100mL)		DBO5 (mgO ₂ /L)	Avec properties of the puration DCO (mgO ₂ /L)	MES (mg/L)	NTK (mgN/L)	N-NH ₄ (mgNH ₄ /L)	NGL (mgN/L)	Pt (mgP/L)	E. Coli (ufc/100mL)	20	
Normes	DBO5	Avec p	MES	NTK	N-NH ₄	traitement NGL	chlorrure Pt	Norme de E. Coli (ufc/100mL)	e rejet de la	DBO5 (mgO ₂ /L)	Avec p épuration DCO (mgO ₂ /L) 40	MES (mg/L)	NTK	N-NH ₄	traitement NGL	chlorrure Pt	ferrique) E. Coli	20	
Normes	DBO5 (mgO ₂ /L)	DCO (mgO ₂ /L)	MES (mg/L)	NTK (mgN/L)	N-NH ₄ (mgNH ₄ /L)	NGL (mgN/L)	Pt (mgP/L)	Norme de E. Coli (ufc/100mL)	e rejet de la	DBO5 (mgO ₂ /L) 15 ues du mil	Avec p épuration DCO (mgO ₂ /L) 40 ieu récepte	MES (mg/L) 20 ur	NTK (mgN/L)	N-NH ₄ (mgNH ₄ /L)	NGL (mgN/L)	Pt (mgP/L)	E. Coli (ufc/100mL)		
Normes	DBO5 (mgO ₂ /L) 15	DCO (mgO ₂ /L) 40	MES (mg/L) 20	NTK (mgN/L) 8,00	N-NH ₄ (mgNH ₄ /L) 5,00	NGL (mgN/L) 10,00	Pt (mgP/L) 15,00	Norme de E. Coli (ufc/100mL)	e rejet de la	DBO5 (mgO ₂ /L) 15 ues du mili DBO5	Avec p épuration DCO (mgO ₂ /L) 40 ieu récepte DCO	MES (mg/L) 20 ur MES	NTK (mgN/L) 8,00	N-NH ₄ (mgNH ₄ /L) 5,00	NGL (mgN/L) 10,00	Pt (mgP/L) 1,50	E. Coli (ufc/100mL)	Débit STEP	
Normes	DBO5 (mgO ₂ /L) 15 DBO5 (mgO ₂ /L)	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L)	MES (mg/L) MES (mg/L)	NTK (mgN/L) 8,00 NTK (mgN/L)	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L)	NGL (mgN/L)	Pt (mgP/L) Pt (mgP/L)	Norme de E. Coli (ufc/100mL) 100000 Concentratio	ons théoriq Débit STEP (m³/jour)	DBOS (mgO ₂ /L) 15 ues du mili DBOS (mgO ₂ /L)	Avec p épuration DCO (mgO ₂ /L) 40 ieu récepte DCO (mgO ₂ /L)	MES (mg/L) 20 ur MES (mg/L)	NTK (mgN/L) 8,00 NTK (mgN/L)	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L)	NGL (mgN/L)	Pt (mgP/L) 1,50 Pt (mgP/L)	E. Coli (ufc/100mL)	Débit STEP (m³/jour)	
Janvier	DBO5 (mgO ₂ /L) 15 DBO5 (mgO ₂ /L)	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L) 11,2	MES (mg/L) 20 MES (mg/L) 3,2	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,25	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10	Pt (mgP/L) 15,00 Pt (mgP/L) 0,62	ferrique) Norme di E. Coli (ufc/100mL) 100000 Concentratio	e rejet de la ons théoriq Débit STEP (m³/jour) 26	DBO5 (mgO ₂ /L) DBO5 (mgO ₂ /L) DBO5 (mgO ₂ /L) DBO5 (mgO ₂ /L)	Avec p épuration DCO (mgO ₂ /L) 40 ieu récepte DCO (mgO ₂ /L)	MES (mg/L) 20 ur MES (mg/L) 3,2	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,25	NGL (mgN/L) NGL (mgN/L) NGL (mgN/L) 1,10	Pt (mgP/L) 1,50 Pt (mgP/L) 0,08	E. Coli (ufc/100mL) 100000	Débit STEP (m³/jour) 26	
Janvier Février	DBO5 (mgO ₂ /L) 15 DBO5 (mgO ₂ /L) 2,0 2,0	DCO (mgO ₂ /L) DCO (mgO ₂ /L) DCO (mgO ₂ /L) 11,2 11,1	MES (mg/L) 20 MES (mg/L) 3,2 3,1	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L) 0,25 0,22	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06	Pt (mgP/L) 15,00 Pt (mgP/L) 0,62 0,55	ferrique) Norme di E. Coli (ufc/100mL) 100000 Concentratio	ons théoriq Débit STEP (m³/jour) 26 26	a station d' DBO5 (mgO ₂ /L) 15 ues du mill DBO5 (mgO ₂ /L) 2,0 2,0	Avec p épuration DCO (mgO ₂ /L) 40 leu récepte DCO (mgO ₂ /L) 11,2 11,1	MES (mg/L) 20 ur MES (mg/L) 3,2 3,1	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L) 0,25 0,22	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06	Pt (mgP/L) 1,50 Pt (mgP/L) 0,08 0,08	E. Coli (ufc/100mL) 100000	Débit STEP (m³/jour) 26 26	
Janvier Février Mars	DBOS (mgO ₂ /L) 15 DBOS (mgO ₂ /L) 2,0 2,0 2,1	DCO (mgO ₂ /L) DCO (mgO ₂ /L) DCO (mgO ₂ /L) 11,2 11,1 11,3	MES (mg/L) 20 MES (mg/L) 3,2 3,1 3,3	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,25 0,22 0,26	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06 1,13	Pt (mgP/L) 15,00 Pt (mgP/L) 0,62 0,55 0,67	ferrique) Norme de E. Coli (ufc/100mL) 100000 Concentration 7204 6398 7786	ons théorig Débit STEP (m³/jour) 26 26 26	a station d' DBO5 (mgO ₂ /L) 15 ues du mil DBO5 (mgO ₂ /L) 2,0 2,0 2,1	Avec p épuration DCO (mgO ₂ /L) 40 ieu récepte DCO (mgO ₂ /L) 11,2 11,1 11,3	MES (mg/L) 20 ur MES (mg/L) 3,2 3,1 3,3	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,25 0,22 0,26	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06 1,13	Pt (mgP/L) 1,50 Pt (mgP/L) 0,08 0,08 0,09	E. Coli (ufc/100mL) 100000 3981 3523 4315	Débit STEP (m³/jour) 26 26 26	
Janvier Février Mars Avril	DBO5 (mgO ₂ /L) 15 DBO5 (mgO ₂ /L) 2,0 2,0 2,1 2,3	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L) 11,2 11,1 11,3 11,7	MES (mg/L) 20 MES (mg/L) 3,2 3,1 3,3 3,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8 0,8 0,9	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L) 0,25 0,22 0,26 0,34	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06 1,13 1,26	Pt (mgP/L) 15,00 Pt (mgP/L) 0,62 0,55 0,67 0,89	ferrique) Norme de E. Coli (ufc/100mL) 100000 Concentration 7204 6398 7786 10297	ons théoriq Débit STEP (m³/jour) 26 26 26	a station d' DBO5 (mgO ₂ /L) 15 ues du mil DBO5 (mgO ₂ /L) 2,0 2,0 2,1 2,3	Avec p épuration DCO (mgO ₂ /L) 40 ieu récepte DCO (mgO ₂ /L) 11,2 11,1 11,3 11,7	MES (mg/L) 20 ur MES (mg/L) 3,2 3,1 3,3 3,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8 0,8	N-NH ₄ (mgNH ₄ /L) N-NH ₄ (mgNH ₄ /L) N-NH ₄ (mgNH ₄ /L) 0,25 0,22 0,26 0,34	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06 1,13 1,26	Pt (mgP/L) 1,50 Pt (mgP/L) 0,08 0,08 0,09 0,11	E. Coli (ufc/100mL) 100000 3981 3523 4315 5775	Débit STEP (m³/jour) 26 26 26 26	
Janvier Février Mars Avril Mai	DBOS (mgO ₂ /L) 15 DBOS (mgO ₂ /L) 2,0 2,0 2,1 2,3 2,5	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L) 11,2 11,1 11,3 11,7 12,2	MES (mg/L) 20 MES (mg/L) 3,2 3,1 3,3 3,5 3,8	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8 0,8 0,9 1,1	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,25 0,22 0,26 0,34 0,42	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06 1,13 1,26 1,42	Pt (mgP/L) 15,00 Pt (mgP/L) 0,62 0,55 0,67 0,89 1,15	ferrique) Norme de E. Coli (ufc/100mL) 100000 Concentratio 7204 6398 7786 10297 10225	ons théoriq Débit STEP (m³/jour) 26 26 26 26 26	DBOS (mgOz/L) 15 ues du mil DBOS (mgOz/L) 2,0 2,0 2,1 2,3 2,5	Avec p épuration DCO (mgO ₂ /L) 40 ieu récepte DCO (mgO ₂ /L) 11,2 11,1 11,3 11,7 12,2	MES (mg/L) 20 ur MES (mg/L) 3,2 3,1 3,3 3,5 3,8	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8 0,9 1,1	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L) 0,25 0,22 0,26 0,34 0,42	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06 1,13 1,26 1,42	Pt (mgP/L) 1,50 Pt (mgP/L) 0,08 0,08 0,09 0,11 0,14	E. Coli (ufc/100mL) 100000 3981 3523 4315 5775 7492	Débit STEP (m³/jour) 26 26 26 26 26	
Janvier Février Mars Avril Mai Juin	DBOS (mgO ₂ /L) 15 DBOS (mgO ₂ /L) 2,0 2,0 2,1 2,3 2,5 3,0	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L) 11,2 11,1 11,3 11,7 12,2 13,4	MES (mg/L) 20 MES (mg/L) 3,2 3,1 3,3 3,5 3,8 4,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8 0,8 0,9 1,1 1,3	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,25 0,22 0,26 0,34 0,42 0,61	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06 1,13 1,26 1,42	Pt (mgP/L) 15,00 Pt (mgP/L) 0,62 0,55 0,67 0,89 1,15 1,72	ferrique) Norme di E. Coli (ufc/100mL) 100000 Concentratio 7204 6398 7786 10297 10225 11565	ons théoriq Débit STEP (m³/jour) 26 26 26 26 26 26	a station d' DBOS (mgOz/L) 15 ues du mil DBOS (mgOz/L) 2,0 2,0 2,1 2,3 2,5 3,0	Avec p épuration DCO (mgO ₂ /L) 40 ieu récepte DCO (mgO ₂ /L) 11,2 11,1 11,3 11,7 12,2 13,4	MES (mg/L) 20 ur MES (mg/L) 3,2 3,1 3,3 3,5 3,8 4,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8 0,8 0,9 1,1 1,3	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,25 0,22 0,26 0,34 0,42 0,61	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06 1,13 1,26 1,42	Pt (mgP/L) 1,50 Pt (mgP/L) 0,08 0,08 0,09 0,11 0,14 0,19	E. Coli (ufc/100mL) 100000 3981 3523 4315 5775 7492 11299	Débit STEP (m³/jour) 26 26 26 26 26 26	
Janvier Février Mars Avril Mai Juin Juillet	DBOS (mgO ₂ /L) 15 DBOS (mgO ₂ /L) 2,0 2,0 2,1 2,3 2,5 3,0 3,7	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L) 11,2 11,1 11,3 11,7 12,2 13,4 14,9	MES (mg/L) 20 MES (mg/L) 3,2 3,1 3,3 3,5 3,8 4,5 5,4	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8 0,8 0,9 1,1 1,3 1,7	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,25 0,22 0,26 0,34 0,42 0,61 0,86	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06 1,13 1,26 1,42 1,78 2,25	Pt (mgP/L) 15,00 Pt (mgP/L) 0,62 0,55 0,67 0,89 1,15 1,72 2,48	ferrique) Norme di E. Coli (ufc/100mL) 100000 Concentratio 7204 6398 7786 10297 10225 11565 16780	ons théoriq Débit STEP (m³/jour) 26 26 26 26 26 26	a station d' DBOS (mgOz/L) 15 ues du mil DBOS (mgOz/L) 2,0 2,0 2,1 2,3 2,5 3,0 3,7	Avec p épuration DCO (mgO ₂ /L) 40 ieu récepte DCO (mgO ₂ /L) 11,2 11,1 11,3 11,7 12,2 13,4 14,9	MES (mg/L) 20 ur MES (mg/L) 3,2 3,1 3,3 3,5 3,8 4,5 5,4	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8 0,8 0,9 1,1 1,3 1,7	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,25 0,22 0,26 0,34 0,42 0,61 0,86	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06 1,13 1,26 1,42 1,78 2,25	Pt (mgP/L) 1,50 Pt (mgP/L) 0,08 0,08 0,09 0,11 0,14 0,19 0,27	E. Coli (ufc/100mL) 100000 3981 3523 4315 5775 7492 11299 16416	Débit STEP (m³/jour) 26 26 26 26 26 26 26	
Janvier Février Mars Avril Mai Juin Juillet Août	DBOS (mgO ₂ /L) 15 DBOS (mgO ₂ /L) 2,0 2,0 2,1 2,3 2,5 3,0 3,7 4,4	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L) 11,2 11,1 11,3 11,7 12,2 13,4 14,9 16,5	MES (mg/L) 20 MES (mg/L) 3,2 3,1 3,3 3,5 3,8 4,5 5,4 6,3	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8 0,8 0,9 1,1 1,3 1,7 2,1	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,25 0,22 0,26 0,34 0,42 0,61 0,86 1,12	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06 1,13 1,26 1,42 1,78 2,25 2,73	Pt (mgP/L) 15,00 Pt (mgP/L) 0,62 0,55 0,67 0,89 1,15 1,72 2,48 3,26	ferrique) Norme di E. Coli (ufc/100mL) 100000 Concentration 7204 6398 7786 10297 10225 11565 16780 22076	ons théoriq Débit STEP (m³/jour) 26 26 26 26 26 26 26	a station d' DBOS (mgOz/L) 15 ues du mil DBOS (mgOz/L) 2,0 2,0 2,1 2,3 2,5 3,0 3,7 4,4	Avec p épuration DCO (mgO ₂ /L) 40 ieu récepte DCO (mgO ₂ /L) 11,2 11,1 11,3 11,7 12,2 13,4 14,9 16,5	MES (mg/L) 20 ur MES (mg/L) 3,2 3,1 3,3 3,5 3,8 4,5 5,4 6,3	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8 0,9 1,1 1,3 1,7 2,1	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,25 0,22 0,26 0,34 0,42 0,61 0,86 1,12	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06 1,13 1,26 1,42 1,78 2,25 2,73	Pt (mgP/L) 1,50 Pt (mgP/L) 0,08 0,08 0,09 0,11 0,14 0,19 0,27 0,34	E. Coli (ufc/100mL) 100000 3981 3523 4315 5775 7492 11299 16416 21628	Débit STEP (m³/jour) 26 26 26 26 26 26 26 26	
Janvier Février Mars Avril Mai Juin Juillet Août Septembre	DBOS (mgO ₂ /L) 15 DBOS (mgO ₂ /L) 2,0 2,0 2,1 2,3 2,5 3,0 3,7 4,4 4,7	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L) 11,2 11,1 11,3 11,7 12,2 13,4 14,9 16,5 17,1	MES (mg/L) 20 MES (mg/L) 3,2 3,1 3,3 3,5 3,8 4,5 5,4 6,3 6,6	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8 0,8 0,9 1,1 1,3 1,7 2,1 2,3	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,25 0,22 0,26 0,34 0,42 0,61 0,86 1,12 1,22	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06 1,13 1,26 1,42 1,78 2,25 2,73 2,92	Pt (mgP/L) 15,00 Pt (mgP/L) 0,62 0,55 0,67 0,89 1,15 1,72 2,48 3,26 3,57	ferrique) Norme di E. Coli (ufc/100mL) 100000 Concentratio 7204 6398 7786 10297 10225 11565 16780 22076 24129	ons théoriq Débit STEP (m³/jour) 26 26 26 26 26 26 26 26 26	a station d' DBOS (mgOz/L) 15 ues du mil DBOS (mgOz/L) 2,0 2,0 2,1 2,3 2,5 3,0 3,7 4,4 4,7	Avec p épuration DCO (mgO ₂ /L) 40 ieu récepte DCO (mgO ₂ /L) 11,2 11,1 11,3 11,7 12,2 13,4 14,9 16,5 17,1	MES (mg/L) 20 ur MES (mg/L) 3,2 3,1 3,3 3,5 3,8 4,5 5,4 6,3 6,6	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8 0,8 0,9 1,1 1,3 1,7 2,1 2,3	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,25 0,22 0,26 0,34 0,42 0,61 0,86 1,12 1,22	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06 1,13 1,26 1,42 1,78 2,25 2,73 2,92	Pt (mgP/L) 1,50 Pt (mgP/L) 0,08 0,08 0,09 0,11 0,14 0,19 0,27 0,34 0,37	E. Coli (ufc/100mL) 100000 3981 3523 4315 5775 7492 11299 16416 21628 23652	Débit STEP (m³/jour) 26 26 26 26 26 26 26 26 26	
Janvier Février Mars Avril Mai Juin Juillet Août Septembre Octobre	DBO5 (mgO ₂ /L) 15 DBO5 (mgO ₂ /L) 2,0 2,0 2,1 2,3 2,5 3,0 3,7 4,4 4,7 4,1	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L) 11,2 11,1 11,3 11,7 12,2 13,4 14,9 16,5 17,1 15,8	MES (mg/L) 20 MES (mg/L) 3,2 3,1 3,3 3,5 3,8 4,5 5,4 6,3 6,6 5,9	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8 0,8 0,9 1,1 1,3 1,7 2,1 2,3 2,0	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,25 0,22 0,26 0,34 0,42 0,61 0,86 1,12 1,22 1,01	NGL (mgN/L) 10,000 NGL (mgN/L) 1,100 1,06 1,13 1,26 1,42 1,78 2,25 2,73 2,92 2,53	Pt (mgP/L) 15,000 Pt (mgP/L) 0,62 0,55 0,67 0,89 1,15 1,72 2,48 3,26 3,57 2,93	ferrique) Norme di E. Coli (ufc/100mL) 100000 Concentration 7204 6398 7786 10297 10225 11565 16780 22076 24129 19795	ons théoriq Débit STEP (m³/jour) 26 26 26 26 26 26 26 26 26 26 26	a station d' DBO5 (mgO ₂ /L) 15 ues du mil DBO5 (mgO ₂ /L) 2,0 2,0 2,1 2,3 2,5 3,0 3,7 4,4 4,7 4,1	Avec p épuration DCO (mgO ₂ /L) 40 ieu récepte DCO (mgO ₂ /L) 11,2 11,1 11,3 11,7 12,2 13,4 14,9 16,5 17,1 15,8	MES (mg/L) 20 ur MES (mg/L) 3,2 3,1 3,3 3,5 3,8 4,5 5,4 6,3 6,6 5,9	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8 0,9 1,1 1,3 1,7 2,1 2,3 2,0	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,25 0,22 0,26 0,34 0,42 0,61 0,86 1,12 1,22 1,01	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06 1,13 1,26 1,42 1,78 2,25 2,73 2,92 2,53	Pt (mgP/L) 1,50 Pt (mgP/L) 0,08 0,08 0,09 0,11 0,14 0,19 0,27 0,34 0,37 0,31	E. Coli (ufc/100mL) 100000 3981 3523 4315 5775 7492 11299 16416 21628 23652 19381	Débit STEP (m³/jour) 26 26 26 26 26 26 26 26 26 26	
Janvier Février Mars Avril Mai Juin Juillet Août Septembre Octobre Novembre	DBO5 (mgO ₂ /L) 15 DBO5 (mgO ₂ /L) 2,0 2,1 2,3 2,5 3,0 3,7 4,4 4,7 4,1 3,0	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L) 11,2 11,1 11,3 11,7 12,2 13,4 14,9 16,5 17,1 15,8 13,4	MES (mg/L) 20 MES (mg/L) 3,2 3,1 3,3 3,5 3,8 4,5 5,4 6,3 6,6 5,9 4,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8 0,9 1,1 1,3 1,7 2,1 2,3 2,0 1,3	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,25 0,22 0,26 0,34 0,42 0,61 1,12 1,22 1,01 0,61	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06 1,13 1,26 1,42 1,78 2,25 2,73 2,92 2,53 1,77	Pt (mgP/L) 15,000 Pt (mgP/L) 0,62 0,55 0,67 0,89 1,15 1,72 2,48 3,26 3,57 2,93 1,71	Ferrique) Norme de E. Coli (ufc/100mL) 100000 Concentration 7204 6398 7786 10297 10225 11565 16780 22076 24129 19795 15172	ons théoriq Débit STEP (m³/jour) 26 26 26 26 26 26 26 26 26 26 26 26	a station d' DBO5 (mgOz/L) 15 ues du mil DBO5 (mgOz/L) 2,0 2,1 2,3 2,5 3,0 3,7 4,4 4,7 4,1 3,0	Avec p épuration DCO (mgO ₂ /L) 40 ieu récepte DCO (mgO ₂ /L) 11,2 11,1 11,3 11,7 12,2 13,4 14,9 16,5 17,1 15,8 13,4	MES (mg/L) 20 ur MES (mg/L) 3,2 3,1 3,3 3,5 3,8 4,5 5,4 6,3 6,6 5,9 4,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8 0,9 1,1 1,3 1,7 2,1 2,3 2,0 1,3	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,25 0,22 0,26 0,34 0,42 0,61 0,86 1,12 1,22 1,01 0,61	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06 1,13 1,26 1,42 1,78 2,25 2,73 2,92 2,53 1,77	Pt (mgP/L) 1,50 Pt (mgP/L) 0,08 0,08 0,09 0,11 0,14 0,19 0,27 0,34 0,37 0,31 0,19	E. Coli (ufc/100mL) 100000 3981 3523 4315 5775 7492 11299 16416 21628 23652 19381 11282	Débit STEP (m³/jour) 26 26 26 26 26 26 26 26 26 26 26 26	
Janvier Février Mars Avril Mai Juin Juillet Août Septembre Octobre	DBO5 (mgO ₂ /L) 15 DBO5 (mgO ₂ /L) 2,0 2,0 2,1 2,3 2,5 3,0 3,7 4,4 4,7 4,1	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L) 11,2 11,1 11,3 11,7 12,2 13,4 14,9 16,5 17,1 15,8	MES (mg/L) 20 MES (mg/L) 3,2 3,1 3,3 3,5 3,8 4,5 5,4 6,3 6,6 5,9	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8 0,8 0,9 1,1 1,3 1,7 2,1 2,3 2,0	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,25 0,22 0,26 0,34 0,42 0,61 0,86 1,12 1,22 1,01	NGL (mgN/L) 10,000 NGL (mgN/L) 1,100 1,06 1,13 1,26 1,42 1,78 2,25 2,73 2,92 2,53	Pt (mgP/L) 15,000 Pt (mgP/L) 0,62 0,55 0,67 0,89 1,15 1,72 2,48 3,26 3,57 2,93	ferrique) Norme di E. Coli (ufc/100mL) 100000 Concentration 7204 6398 7786 10297 10225 11565 16780 22076 24129 19795	ons théoriq Débit STEP (m³/jour) 26 26 26 26 26 26 26 26 26 26 26	a station d' DBO5 (mgO ₂ /L) 15 ues du mil DBO5 (mgO ₂ /L) 2,0 2,0 2,1 2,3 2,5 3,0 3,7 4,4 4,7 4,1	Avec p épuration DCO (mgO ₂ /L) 40 ieu récepte DCO (mgO ₂ /L) 11,2 11,1 11,3 11,7 12,2 13,4 14,9 16,5 17,1 15,8	MES (mg/L) 20 ur MES (mg/L) 3,2 3,1 3,3 3,5 3,8 4,5 5,4 6,3 6,6 5,9	NTK (mgN/L) 8,00 NTK (mgN/L) 0,8 0,8 0,9 1,1 1,3 1,7 2,1 2,3 2,0	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,25 0,22 0,26 0,34 0,42 0,61 0,86 1,12 1,22 1,01	NGL (mgN/L) 10,00 NGL (mgN/L) 1,10 1,06 1,13 1,26 1,42 1,78 2,25 2,73 2,92 2,53	Pt (mgP/L) 1,50 Pt (mgP/L) 0,08 0,08 0,09 0,11 0,14 0,19 0,27 0,34 0,37 0,31	E. Coli (ufc/100mL) 100000 3981 3523 4315 5775 7492 11299 16416 21628 23652 19381	Débit STEP (m³/jour) 26 26 26 26 26 26 26 26 26 26	

Tableau 1 Etude d'acceptabilité au droit du rejet avec normes ministérielles, normes proposées et performances attendues

ı						-1-1-1-1			Avec proposition do paymes (DROE DCO at MES soulement)									
				Ave	<u>c arrêté mi</u>	nisteriei		Norme de	Avec proposition de normes (DBO5, DCO et MES seulement) a station d'épuration									
	DBO5 (mgO ₂ /L)	DCO (mgO ₂ /L)	MES (mg/L)	NTK (mgN/L)	N-NH ₄ (mgNH ₄ /L)	NGL (mgN/L)	Pt (mgP/L)	E. Coli (ufc/100mL)	rejet de i	DBO5 (mgO ₂ /L)	DCO	MES (mg/L)	NTK (mgN/L)	N-NH ₄ (mgNH ₄ /L)	NGL (mgN/L)	Pt (mgP/L)	E. Coli (ufc/100mL)	
Normes	35	200	35	10,00	10,00	15,00	15.00	100000		20	70	30	10,00	10,00	15.00	15,00	100000	
Normes	33	200	33	10,00	10,00	13,00	13,00	Concentratio	ns théoria				10,00	10,00	13,00	13,00	100000	_
ŀ					I			Concentration	Débit			_						Débit
	DBO5	DCO	MES	NTK (===N/L)	N-NH ₄	NGL (===NL(L)	Pt (m=D/L)		STEP	DBO5	DCO	MES	NTK (====================================	N-NH ₄	NGL (math/l)	Pt (m=P/L)		STEP
	(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)		(m³/jour)	(mgO₂/L)	(mgO₂/L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)		(m³/jour)
Janvier	2,2	13,8	3,1	0,7	0,25	1,01	0,32	1997	26	1,9	11,2	3,0	0,7	0,25	1,01	0,32	1997	26
Février	2,1	13,3	3,1	0,7	0,22	0,98	0,29	1763	26	1,8	11,1	3,0	0,7	0,22	0,98	0,29	1763	26
Mars	2,2	14,1	3,2	0,7	0,26	1,04	0,35	2168	26	1,9	11,3	3,1	0,7	0,26	1,04	0,35	2168	26
Avril	2,5	15,5	3,4	0,8	0,34	1,15	0,46	2921	26	2,0	11,7	3,3	0,8	0,34	1,15	0,46	2921	26
Mai	2,8	17,2	3,7	0,9	0,43	1,27	0,60	3823	26	2,2	12,3	3,5	0,9	0,43	1,27	0,60	3823	26
Juin	3,5	21,2	4,4	1,1	0,63	1,57	0,90	5882	26	2,6	13,5	4,1	1,1	0,63	1,57	0,90	5882	26
Juillet	4,4	26,7	5,4	1,3	0,92	1,98	1,34	8787	26	3,1	15,3	4,9	1,3	0,92	1,98	1,34	8787	26
Août	5,5	32,6	6,4	1,6	1,24	2,43	1,81	11920	26	3,7	17,1	5,8	1,6	1,24	2,43	1,81	11920	26
Septembre	5,9	35,0	6,8	1,8	1,36	2,61	2,00	13187	26	3,9	17,9	6,1	1,8	1,36	2,61	2,00	13187	26
Octobre	5,0	30,0	5,9	1,5	1,10	2,23	1,60	10546	26	3,4	16,3	5,4	1,5	1,10	2,23	1,60	10546	26
Novembre	3,5	21,1	4,4	1,1	0,63	1,57	0,90	5872	26	2,6	13,5	4,1	1,1	0,63	1,57	0,90	5872	26
Décembre	2,4	15,3	3,4	0,8	0,33	1,13	0,45	2818	26	2,0	11,7	3,3	0,8	0,33	1,13	0,45	2818	26
QMNA5	6,1	35,9	6,9	1,8	1,40	2,67	2,06	13617	26	4,0	18,2	6,2	1,8	1,40	2,67	2,06	13617	26
		Avec p	erformar	nces attend	dues (sans	traitement	chlorrure	ferrique)			Avec p	erformar	nces attend	lues (avec	traitement	chlorrure	ferrique)	
								Norme de	e rejet de la	la station d'épuration								
	DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt	E. Coli		DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt	E. Coli	
	(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)	(ufc/100mL)		(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)	(ufc/100mL)]
Normes	15	40	20	8,00	5,00	10,00	15,00	100000		15	40	20	8,00	5,00	10,00	1,50	100000	
								Concentration		ues du mil	ieu récepte	<u>ur</u>						
	DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt		Débit	DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt		Débit
	(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)		STEP (m ³ /jour)	(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)		STEP (m³/jour)
Janvier	1,8	10.6	2.8	0.6	0,15	0.91	0.32	1997	26	1,8	10.6	2.8	0.6	0,15	0.91	0.05	1997	26
Février	1,7	10,5	2,8	0,6	0,14	0,89	0,29	1763	26	1,7	10,5	2,8	0,6	0,14	0,89	0,05	1763	26
Mars	1,8	10,6	2,9	0,7	0,16	0,93	0,35	2168	26	1,8	10,6	2,9	0,7	0,16	0,93	0,06	2168	26
Avril	1.9	10.9	3,0	0,7	0.19	1.00	0,46	2921	26	1,9	10,9	3.0	0.7	0,19	1.00	0,07	2921	26
Mai	2,0	11,1	3,2	0,8	0,24	1,08	0,60	3823	26	2,0	11,1	3,2	0,8	0,24	1,08	0,08	3823	26
Juin	2.3	11,8	3,5	0,9	0,34	1,27	0.90	5882	26	2,3	11,8	3,5	0,9	0,34	1,27	0,11	5882	26
Juillet	2,7	12.6	4.0	1,2	0,48	1,54	1,34	8787	26	2,7	12,6	4,0	1,2	0,48	1,54	0.15	8787	26
Août	3,1	13,6	4,6	1,4	0,64	1,83	1,81	11920	26	3,1	13,6	4,6	1,4	0,64	1,83	0,20	11920	26
Septembre	3,3	14.0	4,8	1,5	0,70	1.95	2.00	13187	26	3,3	14.0	4,8	1,5	0,70	1,95	0.22	13187	26
Octobre	2.9	13.2	4,3	1,3	0,70	1,71	1.60	10546	26	2.9	13.2	4,3	1,3	0,70	1,71	0,22	10546	26
Novembre	2,3	11,8	3,5	0,9	0,34	1,27	0,90	5872	26	2,3	11,8	3,5	0,9	0,34	1,27	0,11	5872	26
Décembre	1.9	10.8	3,0	0,9	0,34	0.99	0,90	2818	26	1.9	10.8	3,0	0,5	0,34	0.99	0,11	2818	26
QMNA5	3,3	14,1	4,9	1,5	0,19	1,99	2,06	13617	26	3,3	14,1	4,9	1,5	0,19	1,99	0,07	13617	26
CMMMD	3,3	14,1	4,5	1,5	0,72	1,55	2,00	13017	20	3,3	14,1	4,5	1,5	0,72	1,55	0,23	13017	20

Tableau 2 Etude d'acceptabilité à l'exutoire du Kernassac'h

				Ave	c arrêté mir	nistárial					Ava	c propos	tion de no	rmes (DBO	E DCO et	MES souls	mentl	
				AVE	L arrete iiiii	iisteriei		Avec proposition de normes (DBO5, DCO et MES seulement) station d'épuration										
	DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt	E. Coli	rejet de it	DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt	E. Coli	
	(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)		(ufc/100mL)		(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)	(ufc/100mL)	
Normes	35	200	35	10,00	10,00	15,00	15,00	100000		20	70	30	10.00	10,00	15.00	15.00	100000	
								Concentratio	ns théorig	ues du mili	eu réceptei	ur						
	DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt		Débit	DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt		Débit
	(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)		STEP	(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)		STEP
la mida a					0.07			470	(m³/jour)					0.07			470	(m³/jour)
Janvier	1,6 1,6	10,3 10,3	2,6 2,5	0,5 0,5	0,07 0,06	0,75 0,75	0,05 0,05	178 161	26 26	1,5 1,5	10,1 10,1	2,5 2,5	0,5 0,5	0,07 0,06	0,75	0,05	178 161	26 26
Février	1,6	10,3	2,5	0,5	0,06	0,75	0,05	194	26	1,5	10,1	2,5	0,5	0,06	0,75 0,76	0,05 0.05	194	26
Mars Avril	1,6	10,5	2,6	0,5	0,07	0,76	0,05	260	26	1,5	10,1	2,6	0,5	0,07	0,76	0,05	260	26
Mai	1,6	10,6	2,6	0,5	0,08	0,78	0,08	345	26	1,6	10,2	2,6	0,5	0,08	0,78	0,08	345	26
Juin	1,7	11,0	2,7 2,8	0,6	0,10	0,81	0,11	552	26 26	1,6	10,3	2,6	0,6	0,10	0,81	0,11	552	26
Juillet Août	1,8 1.9	11,6 12.2	2,8	0,6	0,13	0,85 0,89	0,15 0,20	844 1156	26	1,7 1,7	10,5 10,7	2,7 2,8	0,6 0,6	0,13	0,85 0,89	0,15 0,20	844	26 26
	1,9	12,2	2,9	0,6 0.6	0,16 0,18	0,89	0,20	1329	26	1,7	10,7	2,8	0,6	0,16 0,18	0,89	0,20	1156 1329	26
Septembre	1,9	11,9	2,9	0,6	/	-7-			26	1,7	10,6	2,9	0,6	/	0,92	0,22		26
Octobre	-/-				0,15	0,87	0,17	1004		-				0,15			1004	
Novembre	1,7 1.6	11,0	2,7 2.6	0,5	0,10	0,80	0,10	524	26	1,6 1.5	10,3 10.1	2,6 2.6	0,5 0.5	0,10	0,80	0,10	524	26
Décembre	2,0	10,5 12,6	2,6	0,5 0,6	0,07 0,19	0,76 0,92	0,06	247 1367	26 26		10,1	2,6	0,5	0,07 0,19	0,76 0,92	0,06	247 1367	26 26
QMNA5	2,0	-			- 7		-,		20	1,8								20
		Avec p	errorman	ices attend	dues (sans t	traitement	cniorrure		roint do la	station d'		ertorman	ces attend	lues (avec t	raitement	cniorrure	<u>terrique</u>	
	DBO5	DCO	MES	NTK	N. N.	NGL	Pt	E. Coli	rejet de la	DBO5	DCO	MES	NTK		NGL	Pt	E. Coli	
	(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	N-NH ₄ (mgNH ₄ /L)	(mgN/L)		(ufc/100mL)		(mgO ₂ /L)		(mg/L)	(mgN/L)	N-NH ₄ (mgNH ₄ /L)	(mgN/L)	(mgP/L)	(ufc/100mL)	
Normes	15	40	20	8,00	5,00	10,00	15,00	100000		15	40	20	8,00	5,00	10,00	1,50	100000	ļ
Normes	13	40	20	8,00	3,00	10,00	13,00	Concentratio	ns théoria				0,00	3,00	10,00	1,50	100000	
		0.00	*****	NEW		NGI		Concentratio	Débit			_	NITH		NGI			Débit
	DBO5	DCO	MES	NTK (mgN/L)	N-NH ₄	NGL (mgN/L)	Pt (maD/L)		STEP	DBO5	DCO	MES	NTK (mgh)(I)	N-NH ₄	NGL (mgN/L)	Pt (maD/L)		STEP
	(mgO₂/L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)		(m³/jour)	(mgO ₂ /L)	(mgO₂/L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)		(m³/jour)
Janvier	1,5	10,1	2,5	0,5	0,06	0,75	0,05	178	26	1,5	10,1	2,5	0,5	0,06	0,75	0,03	178	26
Février	1,5	10,0	2,5	0,5	0,06	0,74	0,05	161	26	1,5	10,0	2,5	0,5	0,06	0,74	0,03	161	26
Mars	1,5	10,1	2,5	0,5	0,06	0,75	0,05	194	26	1,5	10,1	2,5	0,5	0,06	0,75	0,03	194	26
Avril	1,5	10,1	2,5	0,5	0,06	0,75	0,06	260	26	1,5	10,1	2,5	0,5	0,06	0,75	0,03	260	26
Mai	1,5	10,1	2,6	0,5	0,07	0,76	0,08	345	26	1,5	10,1	2,6	0,5	0,07	0,76	0,03	345	26
Juin	1,6	10,2	2,6	0,5	0,08	0,78	0,11	552	26	1,6	10,2	2,6	0,5	0,08	0,78	0,03	552	26
Juillet	1,6	10,3	2,6	0,6	0,09	0,81	0,15	844	26	1,6	10,3	2,6	0,6	0,09	0,81	0,04	844	26
Août	1,7	10,3	2,7	0,6	0,11	0,84	0,20	1156	26	1,7	10,3	2,7	0,6	0,11	0,84	0,04	1156	26
Septembre	1,7	10,4	2,7	0,6	0,12	0,85	0,22	1329	26	1,7	10,4	2,7	0,6	0,12	0,85	0,04	1329	26
Octobre	1,6	10,3	2,7	0,6	0,10	0,82	0,17	1004	26	1,6	10,3	2,7	0,6	0,10	0,82	0,04	1004	26
Novembre	1,6	10,2	2,6	0,5	0,08	0,78	0,10	524	26	1,6	10,2	2,6	0,5	0,08	0,78	0,03	524	26
Décembre	1,5	10,1	2,5	0,5	0,06	0,75	0,06	247	26	1,5	10,1	2,5	0,5	0,06	0,75	0,03	247	26
QMNA5	1,7	10,4	2,7	0,6	0,12	0,86	0,23	1367	26	1,7	10,4	2,7	0,6	0,12	0,86	0,05	1367	26

Tableau 3 Tableau d'acceptabilité à l'aval de la confluence avec le Bouillenou

				Ave	c arrêté mi	nistériel			Avec proposition de normes (DBO5, DCO et MES seulement)									
								Norme de	station d'épuration									
	DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt	E. Coli		DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt	E. Coli	
	(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)	(ufc/100mL)		(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)	(ufc/100mL)	
Normes	35	200	35	10,00	10,00	15,00	15,00	100000		20	70	30	10,00	10,00	15,00	15,00	100000	
								Concentratio	ns théorig	ues du mili	eu récepte	ur						
	DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt		Débit	DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt		Débit
	(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)		STEP	(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)		STEP
Janvier	1,5	10.0	2,5	0,5	0,05	0,73	0.03	14	(m³/jour) 26	1,5	10,0	2,5	0,5	0.05	0,73	0.03	14	(m³/jour) 26
-							- 7											
Février	1,5 1.5	10,0	2,5	0,5	0,05	0,73	0,03	13 14	26 26	1,5	10,0	2,5	0,5 0,5	0,05	0,73	0,03	13 14	26
Mars Avril	1,5	10,0 10.0	2,5	0,5 0,5	0,05	0,73	0.03	16	26	1,5 1,5	10,0 10.0	2,5 2,5	0,5	0,05 0,05	0,73 0.73	0,03	16	26
	-		2,5		0,05	0,73											18	26
Mai	1,5	10,0	2,5	0,5	0,05	0,73	0,03	18	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	23	26
Juin	1,5	10,0	2,5	0,5	0,05	0,73	0,03	23	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03		26
Juillet	1,5	10,0	2,5	0,5	0,05	0,73	0,03	29	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	29	26
Août	1,5	10,1	2,5 2,5	0,5	0,05	0,73 0,73	0,03	38 43	26 26	1,5 1,5	10,0 10.0	2,5 2,5	0,5 0,5	0,05	0,73	0,03	38 43	26
Septembre	1,5	10,1		0,5	0,05		-7							-,	0,73	-7		26
Octobre	1,5	10,0	2,5	0,5	0,05	0,73	0,03	34	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	34	26
Novembre	1,5	10,0	2,5	0,5	0,05	0,73	0,03	23	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	23	26
Décembre	1,5	10,0	2,5	0,5	0,05	0,73	0,03	16	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	16	26
QMNA5	1,5	10,1	2,5	0,5	0,05	0,73	0,03	44	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	44	26
		Avec p	ertormar	ices attend	dues (sans t	traitement	chlorrure					ertormar	ices attend	dues (avec 1	traitement	chlorrure	terrique)	
									rejet de i	a station d'	_							
	DBO5 (mgO ₂ /L)	DCO (mgO ₂ /L)	MES (mg/L)	NTK (mgN/L)	N-NH ₄ (mgNH ₄ /L)	NGL (mgN/L)	Pt (mgP/L)	E. Coli (ufc/100mL)		DBO5 (mgO ₂ /L)	DCO (mgO ₂ /L)	MES (mg/L)	NTK (mgN/L)	N-NH ₄ (mgNH ₄ /L)	NGL (mgN/L)	Pt (mgP/L)	E. Coli (ufc/100mL)	
	15	40	20	8,00	5,00				l	(IIIgO ₂ /L)	40	20	8,00	5,00	10,00	1,50		
Normes	15	40	20	8,00	5,00	10,00	15,00	100000					8,00	5,00	10,00	1,50	100000	
				Ι	T			Concentratio	Débit			Т						Débit
	DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt		STEP	DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt		STEP
	(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)		(m³/jour)	(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)		(m³/jour)
Janvier	1,5	10,0	2,5	0,5	0,05	0,73	0,03	14	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	14	26
Février	1,5	10,0	2,5	0,5	0,05	0,73	0,03	13	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	13	26
Mars	1,5	10,0	2,5	0,5	0,05	0,73	0,03	14	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	14	26
Avril	1,5	10,0	2,5	0,5	0,05	0,73	0,03	16	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	16	26
Mai	1,5	10,0	2,5	0,5	0,05	0,73	0,03	18	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	18	26
Juin	1,5	10,0	2,5	0,5	0,05	0,73	0,03	23	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	23	26
Juillet	1,5	10,0	2,5	0,5	0,05	0,73	0,03	29	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	29	26
Août	1,5	10,0	2,5	0,5	0,05	0,73	0,03	38	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	38	26
	1,5	10,0	2,5	0,5	0,05	0,73	0,03	43	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	43	26
Septembre		10,0	2,5	0,5	0,05	0,73	0,03	34	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	34	26
Septembre Octobre	1,5	10,0																
	1,5 1,5	10,0	2,5	0,5	0,05	0,73	0,03	23	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	23	26
Octobre				0,5 0,5	0,05 0,05	0,73 0,73	0,03 0,03	23 16	26 26	1,5 1,5	10,0 10,0	2,5 2,5	0,5 0,5	0,05	0,73 0,73	0,03	23 16	26 26

Tableau 4 Acceptabilité à l'aval de la confluence avec le Trieux

Les normes de rejet proposées et les performances attendues permettent de ne pas impacter les eaux littorales.

3.2.4. La gestion des boues

S'agissant de lits de séchage plantés de roseaux, les lits seront chacun curés entièrement selon un cycle de curage s'étendant sur plusieurs années. Curage des lits, récupération des boues déshydratées puis épandage après hygiénisation ou mise en compost.

3.2.5. Continuité de service

Lannion-Trégor Communauté s'engage à assurer, pendant toute la durée des travaux, la continuité du service public d'assainissement collectif. Aucun déversement ne sera admis pendant les travaux.

3.2.6. Planning prévisionnel des travaux

Parution marché de travaux : août 2022 Notification marché de travaux : avril 2023

Début travaux sur site : octobre 2023

Mise en service nouvelle STEP : juillet 2024

4. PRESENTATION DU PROJET JUSTIFIANT LA DEMANDE DE DEROGATION A L'ARTICLE L121-5

4.1. RAPPEL DU CADRE REGLEMENTAIRE

Le projet est soumis aux réglementations suivantes :

4.1.1. Cadre juridique lié à la Loi Littoral (Chapitre VI du code de l'urbanisme)

La commune de Lanmodez est soumise à l'application de la loi Littoral sur l'ensemble de son territoire.

Le site retenu, objet de la présente étude, est donc concerné par cette législation.

Discontinuité avec l'agglomération existante (art. L.121-8 du code de l'urbanisme) Article L121-8 du code de l'urbanisme :

« L'extension de l'urbanisation se réalise soit en continuité avec les agglomérations et villages existants, soit en hameaux nouveaux intégrés à l'environnement. »

Le site retenu se situe dans une coupure d'urbanisation et donc en discontinuité de l'agglomération et villages existants.

Il est demandé de pouvoir déroger à cet aspect de l'article L121-8 du code de l'urbanisme et de pouvoir procéder à la construction de la nouvelle station d'épuration de Lanmodez en discontinuité de l'urbanisation existante. Il est précisé que les nouveaux ouvrages n'engendreront pas de nuisance pour le voisinage : il s'agit d'une station de petite taille qui sera intégrée dans son environnement et qui ne provoquera pas de nuisance olfactive contrairement à la station existante, visuelle et sonore. Le projet s'éloigne de l'urbanisation et une désodorisation pourra être mise en place si nécessaire, ainsi qu'un capotage des ouvrages au besoin.

Photo 4 Habitations à moins de 100 mètres

Site dans une coupure d'urbanisation (art. L.121-22 du code de l'urbanisme)

Article L121-22 du code de l'urbanisme :

« Les schémas de cohérence territoriale et les plans locaux d'urbanisme doivent prévoir des espaces naturels présentant le caractère d'une coupure d'urbanisation. »

Le SCoT du Trégor classe le site du projet dans une coupure d'urbanisation. Il reste entouré de parcelles agricoles et est éloigné de l'urbanisation. Quelques habitations et une chapelle se trouve de l'autre côté de la voie qui longe la parcelle. Le projet étant de petite taille et ne présentant pas d'ouvrages importants, la coupure d'urbanisation persiste.

Site en dehors des espaces remarquables (art. L.121-23 du code de l'urbanisme)

Article L121-23 du code de l'urbanisme :

« Les documents et décisions relatifs à la vocation des zones ou à l'occupation et à l'utilisation des sols préservent les espaces terrestres et marins, sites et paysages remarquables ou

caractéristiques du patrimoine naturel et culturel du littoral, et les milieux nécessaires au maintien des équilibres biologiques.

Un décret fixe la liste des espaces et milieux à préserver, comportant notamment, en fonction de l'intérêt écologique qu'ils présentent, les dunes et les landes côtières, les plages et lidos, les forêts et zones boisées côtières, les îlots inhabités, les parties naturelles des estuaires, des rias ou abers et des caps, les marais, les vasières, les zones humides et milieux temporairement immergés ainsi que les zones de repos, de nidification et de gagnage de l'avifaune désignée par la directive 79/409 CEE du 2 avril 1979 concernant la conservation des oiseaux sauvages. »

Le projet est situé en dehors des espaces remarquables du littoral.

Localisation en dehors des espaces proches du rivage (art. L.121-13 du code de l'urbanisme)

Article L121-13 du code de l'urbanisme :

« L'extension limitée de l'urbanisation des espaces proches du rivage ou des rives des plans d'eau intérieurs désignés au <u>1° de l'article L. 321-2 du code de l'environnement</u> est justifiée et motivée dans le plan local d'urbanisme, selon des critères liés à la configuration des lieux ou à l'accueil d'activités économiques exigeant la proximité immédiate de l'eau. »

Le projet ne se situe pas en espace proche du rivage.

Site non concerné par la bande des 100 m le long du rivage (art. L.121-16-III du code de l'urbanisme)

Article L121-16 du code de l'urbanisme : « En dehors des espaces urbanisés, les constructions ou installations sont interdites sur une bande littorale de cent mètres à compter de la limite haute du rivage ou des plus hautes eaux pour les plans d'eau intérieurs désignés au <u>1° de l'article L. 321-2</u> du code de l'environnement. »

Le site du projet est situé à plus d'1km de la mer. Il n'est donc pas concerné par la bande des 100 mètres.

4.1.2. Article L121-5 du code de l'urbanisme

Le code de l'urbanisme prévoit, dans certains cas exceptionnels, la possibilité de déroger à la loi Littoral. Ainsi l'article L.121-5 du code de l'urbanisme indique :

« A titre exceptionnel, les stations d'épuration d'eaux usées, non liées à une opération d'urbanisation nouvelle, peuvent être autorisées par dérogation aux dispositions du présent chapitre. »

Une jurisprudence de la Cours Administrative d'Appel de Nantes, datée du 8 octobre 2010 (n°09NT01763) précise que « la dérogation instaurée par ledit article n'est pas applicable seulement aux dispositions du III de l'article L. 146-4 dudit code, mais à l'ensemble du chapitre VI du code de l'urbanisme ; que par ailleurs, il ressort des pièces du dossier, notamment de la demande de dérogation, que la station litigieuse, dont ne peuvent être dissociés ses locaux techniques, n'a pas pour objet de répondre aux besoins nés d'une urbanisation nouvelle, mais de mettre fin à la capacité insuffisante de la station existante, génératrice de pollution. »

L'objet de la présente étude est de demander la dérogation prévue par l'article L.121-5 du code de l'urbanisme afin de rendre possible la construction de la nouvelle station d'épuration de Lanmodez qui permettra d'assurer un traitement des eaux usées satisfaisant, d'améliorer la situation, et de supprimer les nuisances olfactives pour les riverains.

La lettre circulaire du ministre de l'Ecologie du 26 janvier 2009 relative à l'application du second alinéa de l'article L. 146-8 (nouvellement numéroté L121-5) précise :

« La nécessité de prendre en compte, à l'occasion des demandes de dérogation présentées sur le fondement de l'article L. 146-8 du code de l'urbanisme, les principes de mise en œuvre détaillés en annexe [de la lettre] et de veiller à ce que les mesures de préservation et de protection applicables sur tout le territoire des communes littorales ne soient affaiblies »

Elle préconise l'analyse des points suivants dans le cadre de la demande de dérogation :

- indiquer avec précision la nature des équipements envisagés et les caractéristiques du site d'implantation,
- justifier le caractère impératif de la localisation du projet,
- analyser le système d'assainissement à l'échelle communale et intercommunale,
- démontrer que le projet ne présente pas d'impact significatif sur le site et prévoir le cas échéant des mesures dites compensatoires,
- respecter la condition tenant à l'absence d'urbanisation nouvelle.

4.1.3. Article L 414-1 et suivant du code de l'environnement

L'article L.414-4 du Code d'Environnement précise que :

Lorsqu'ils sont susceptibles d'affecter de manière significative un site Natura 2000, individuellement ou en raison de leurs effets cumulés, doivent faire l'objet d'une évaluation de leurs incidences au regard des objectifs de conservation du site, dénommée ci-après " Evaluation des incidences Natura 2000 " :

2° Les programmes ou projets d'activités, de travaux, d'aménagements, d'ouvrages ou d'installations;

Le projet ne se trouve pas au sein d'un site Natura 2000. Le projet n'est pas soumis à études d'incidences NATURA 2000; le contenu de l'évaluation d'incidence Natura 2000 se limitera ici à la présentation et à l'exposé définis au I de l'article R. 414-23, dès lors que cette première analyse conclut à l'absence d'incidence significative sur tout site Natura 2000.

4.1.4. Synthèse

Le projet de construction de la nouvelle station d'épuration de Lanmodez se situe en dehors de la bande inconstructible des 100 mètres, des espaces remarquables du littoral et des espaces proches du rivage.

En revanche, le projet se situe en discontinuité de l'urbanisation et au sein d'une coupure d'urbanisation.

Le projet se limite à la parcelle A 481 et aux ouvrages nécessaires au traitement de l'eau et des boues. La coupure d'urbanisation sera réduite mais persistera car le site reste entouré d'espace agricole non construits. La construction envisagée s'éloigne de l'urbanisation. Seules quelques habitations et une chapelle se situe de l'autre côté de la voie qui longe la parcelle.

Comme précisé à l'article L121-5 du code de l'urbanisme, une dérogation peut être envisageable afin de rendre possible ce projet qui permettra d'assurer un traitement de meilleure qualité, de moins impacter le milieu récepteur et de réduire significativement les nuisances actuelles.

Comme précisé dans la lettre circulaire du ministre de l'Ecologie du 26 janvier 2009 relative à l'application du second alinéa de l'article L. 146-8 (nouvellement numéroté L121-5), le dossier de demande de dérogation devra présenter :

- ➤ La nature des équipements envisagés et les caractéristiques du site d'implantation,
- La justification du caractère impératif de la localisation du projet,
- L'analyse du système d'assainissement à l'échelle communale et intercommunale,
- La démonstration de l'absence d'impact significatif sur le site et prévoir le cas échéant des mesures dites compensatoires,
- ➤ La condition tenant à l'absence d'urbanisation nouvelle.

4.2. NATURE DES EQUIPEMENTS ENVISAGES ET CARACTERISTIQUES DU SITE D'IMPLANTATION

4.2.1. Localisation du site d'implantation du projet

Le projet se situe sur la parcelle A 481. Cette localisation permet de conserver les réseaux existants, de récupérer l'ouest du bourg de Lanmodez en gravitaire jusqu'au nouveau site et d'assurer facilement la continuité de service pendant la durée des travaux.

carte 10 Localisation de la parcelle du projet

4.2.2. Equipements envisagés

La nouvelle STEP sera de type boues activés et sera dimensionnée sur une charge de 180 EH et un volume journalier de 56 m³/j. Son dimensionnement prend en compte les branchements existants, le SCoT et le zonage d'assainissement de la commune.

Caractéristiques des ouvrages :

- Dégrilleur droit en entrée
- Canal de comptage à section exponentielle en entrée
- Boues activées
 - Bassin d'aération
 - o Dégazeur
 - Clarificateur
- Canal de comptage à seuil triangulaire en sortie
- Déshydratation des boues par lits de séchage plantés de roseaux
- Système d'injection de chlorure ferrique pour traitement de la pollution phosphorée

Le plan de masse du projet est consultable en annexe 1.

Figure 6 : Intégration paysagère du projet

COUPE A - 1/250

Figure 7 : Plan en coupe du projet

4.2.3. Concertation

Le projet de mise aux normes de la station d'épuration de Lanmodez a été élaboré en concertation avec :

- La Direction Départementale des Territoires et de la Mer des Côtes d'Armor (service environnement),
- Le service eau potable et assainissement de Lannion-Trégor Communauté,
- Le service urbanisme de Lannion-Trégor Communauté,
- Le service environnement de Lannion-Trégor Communauté,
- La commune de Lanmodez.

4.3. ANALYSE DU SYSTEME D'ASSAINISSEMENT AU NIVEAU COMMUNAL ET INTERCOMMUNAL

L'objectif des travaux est d'assurer un traitement de meilleure qualité et l'arrêt des nuisances pour le voisinage (nuisances olfactives). En effet, la nouvelle filière permettra d'assurer un traitement plus performant que le filtre à sable actuel et les ouvrages seront conçus pour éviter les nuisances visuelles, olfactives et sonores pour le voisinage.

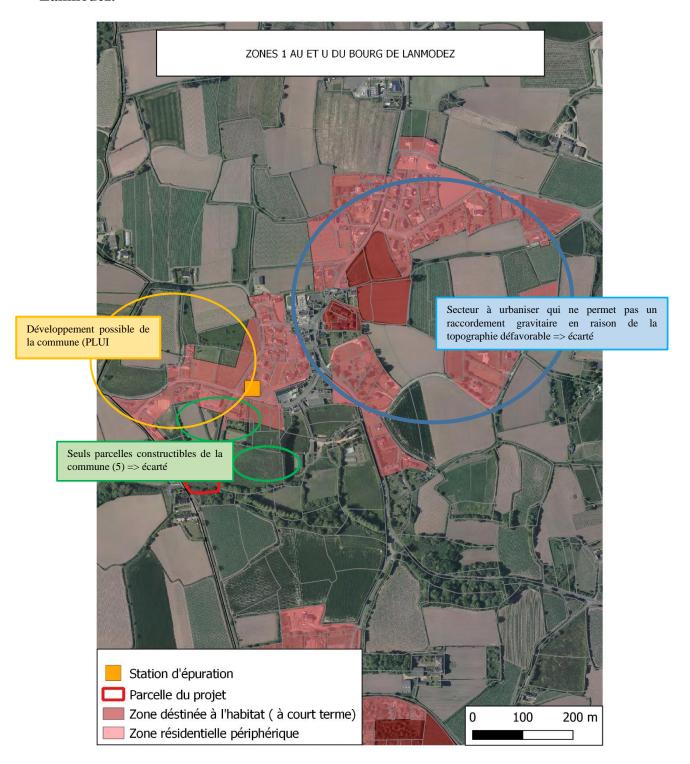
Dans le cadre de la mise en œuvre de l'article L121-5 du code de l'urbanisme, l'étude doit analyser des solutions de substitution au projet. Pour cela, d'autres sites ont été recherchés, ainsi que des solutions de regroupement avec d'autres communes.

4.3.1. Analyse à l'échelle communale

Dans le cas du déplacement de l'installation de traitement, le code de l'urbanisme et la loi Littoral doivent être pris en compte, ce qui restreint les terrains disponibles.

En effet, ces terrains doivent se situer dans la continuité du bâti existant. Il reste très peu de parcelles constructibles sur la commune de Lanmodez, situées en continuité immédiate de l'urbanisation existante elles ont été écartées afin d'éviter les nuisances et de ne pas réduire les possibilités de construction de la commune.

La seule zone à urbaniser du bourg se situe au Nord et nécessiterait la mise en place de plusieurs postes de relèvement pour réaliser le projet en raison de la topographie non favorable à un raccordement gravitaire. La mise en place de postes de relèvement rendrait le coût du projet trop important (à raison d'au moins 50 000€ supplémentaires par poste de relèvement).


Les zones à urbaniser sur le long terme du PLU de la commune ont été gelées. Le développement de la commune pourra se faire vers l'ouest du bourg mais il faudra attendre la réalisation du Plan Local d'Urbanisme Intercommunal.

Les nuisances d'exploitation d'une station d'épuration doivent être prises en compte également (bruit, odeurs, ...), ce qui ne permet pas d'implanter une nouvelle installation dans la continuité du bâti résidentiel. Le projet s'éloigne donc de l'urbanisation existante pour se situer en zone agricole et à proximité de seulement quelques habitations et une chapelle.

Cependant, l'implantation en zone industrielle ou artisanale peut être envisagée. Cette hypothèse nécessite de lourds investissements, comprenant le coût d'une nouvelle station et des réseaux de

transfert associés. Il n'y a pas de zone industrielle ou artisanale disponible sur la commune de Lanmodez.

Carte 11 Situation géographique des zones potentielles

4.3.2. Analyse à l'échelle intercommunale

Un deuxième scénario concerne le transfert vers une station d'épuration d'une collectivité voisine ou la création d'une nouvelle station d'épuration sur l'une de ces communes.

COMMUNES LITTORALES

Les communes voisines de Lézardrieux et Pleubian sont également soumises à la loi Littoral et aux mêmes contraintes réglementaires pour leur restructuration ou construction de station d'épuration. Leurs stations d'épuration sont éloignées des réseaux d'eaux usées de Lanmodez ce qui engendrerait des coûts excessifs de travaux et un risque de formation d'H₂S. Elles sont dimensionnées pour recevoir les eaux usées de leurs communes. De plus, le système d'assainissement de Pleubian dysfonctionne (débordements) et ne peut en l'état accueillir les charges supplémentaires d'une autre commune sans travaux importants. La station d'épuration de Pleubian se situe à près de 2 kilomètres des réseaux de Lanmodez, celle de Lézardrieux à 6 km.

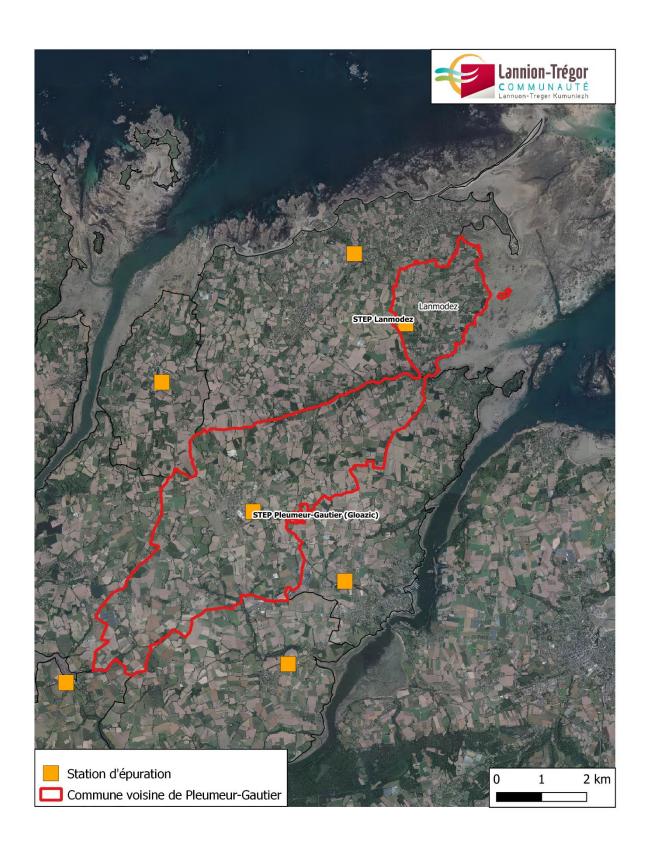
Il n'est pas envisagé de transférer les eaux usées de la commune de Lanmodez sur une autre commune littorale.

carte 12 Communes littorales voisines de Lanmodez et leurs stations d'épuration

COMMUNE NON LITTORALE

La commune non littorale la plus proche (Pleumeur-Gautier) ne dispose pas d'une station d'épuration de capacité suffisante (elle est surchargée hydrauliquement). Cette station fait l'objet d'un rapport de manquement administratif et se situe trop loin de la station actuelle de Lanmodez. Son rejet actuel et futur dégrade déjà le milieu récepteur insuffisant. Il n'est donc pas envisageable d'augmenter la charge polluante reçue à cette station, ni d'imposer une pression supplémentaire sur le milieu récepteur.

La commune de Pleumeur-Gautier est également trop éloignée des réseaux de Lanmodez pour envisager un transfert économiquement raisonnable pour un système d'assainissement d'aussi petite capacité nominale. La station d'épuration de Pleumeur-Gautier se situe à plus de 5 km de celle de Lanmodez. Pleumeur-Gautier se situe au plus proche à 1,2km de Lanmodez.


Le transfert nécessiterait la création d'un linéaire très important de réseaux engendrant un risque de formation d'H₂S et un coût de travaux très important.

Pleumeur-Gautier ne dispose pas de plan local d'urbanisme. Elle est donc soumise au Règlement National d'Urbanisme pour tout projet.

Pleumeur-Gautier est une commune agricole et la majorité des parcelles non construites font l'objet d'une déclaration d'exploitation agricole.

Le scénario du transfert de la station d'épuration de Lanmodez vers Pleumeur-Gautier n'a pas été retenu.

carte 13 Commune non littorale la plus proche : Pleumeur-Gautier

4.4. JUSTIFICATION DU CARACTERE IMPERATIF DE LA LOCALISATION DU PROJET

La mise en place de la nouvelles station d'épuration à boues activées va permettre d'améliorer la qualité du rejet et de supprimer les nuisances olfactives pour le voisinage.

Compte-tenu des contraintes exposées précédemment, et notamment réglementaires (loi Littoral, urbanisme...), techniques et financières (surcoûts liés à la création d'un réseau de transfert et/ou d'une nouvelle station d'épuration), le choix se porte sur la parcelle A 481.

Figure 8 Parcelle du projet

L'habitation la plus proche se situe à moins de 100 mètres.

4.5. IMPACT SIGNIFICIATIFS DU PROJET SUR LE SITE ET MESURES REDUCTRICES ASSOCIEES

En phase d'exploitation et en phase travaux, le projet n'aura aucun impact sur la topographie, la géologie, la pédologie et le contexte climatique de la zone d'étude. Le projet n'aura pas non plus d'impact sur les risques naturels et ne modifiera pas la vulnérabilité des personnes et des biens à ces risques.

4.5.1. Incidences en phase travaux

INCIDENCES TEMPORAIRES LIEES AU CHANTIER

Des moyens de protection devront être mis en place contre les détériorations dues à la circulation des engins de chantier.

A la fin des travaux, les aires de chantiers seront remises en état.

Il existe un risque de dégradation du milieu hydrographique en raison des échappements des matières en suspension qui cesseront à la fin des travaux.

Les camions seront bâchés afin de limiter l'envol de fines et les travaux seront suspendus en cas de forts épisodes pluvieux.

Les dépôts de chantier seront installés l'écart du site. Les unités de fabrication de béton seront équipées de bassins de rétention et de décantation.

Les aires de dépôt et d'entretien des engins seront équipés de bacs de rétention pour le stockage des produits inflammables et de bidons pour le recueil des eaux usagées qui seront évacuées régulièrement.

Il sera évité de stocker sur place des hydrocarbures.

CONTINUITE DE SERVICE

Aucun déversement ne sera admis pendant les travaux.

La continuité de service sera assurée par la station d'épuration actuelle en attendant la mise en service de la nouvelle unité.

4.5.2. Incidences en phase exploitation

INCIDENCES QUANTITATIVES ET QUALITATIVES

La nouvelle station d'épuration de Lanmodez aura à long terme une capacité nominale plus importante (180 EH) que la station d'épuration actuelle (120 EH). Le nouveau procédé permettra de moins impacter le milieu récepteur que le filtre à sable actuel et permettra de supprimer les nuisances olfactives subies par les riverains (école, gîte, habitations). En effet, la nouvelle station d'épuration permettra un traitement plus poussé et un impact positif sur la qualité de l'eau rejetée qui permettra de préserver les usages en aval (Trieux). Un dispositif d'auto surveillance sera mis en place afin d'éviter tout rejet direct au milieu naturel.

La nouvelle station d'épuration respectera des normes plus poussées que celles demandées par la réglementation nationale en vigueur.

Les normes de rejets proposées sont les suivantes :

 $DBO_5: 20 \text{ mg/L}$

DCO: 70 mg/L

MES: 30 mg/L

NTK: 10 mg/L

 $N-NH_4:10 \text{ mg/L}$

NGL: 15 mg/L

Pt: 15 mg/l ou 1,5 avec traitement au chlorure ferrique.

4.5.3. <u>Incidences sur le site d'implantation de la station</u>

Le site du projet est une parcelle agricole sans intérêt écologique particulier.

Photo 5 Photos de la parcelle du projet

4.5.4. Incidences paysagères

Le site de la future station d'épuration est peu visible depuis quelques habitations de l'autre côté de la voie. La notice d'insertion paysagère est consultable en annexe. Les nuisances visuelles seront faibles.

Photo 6 Vues vers la parcelle du projet depuis la voie et les habitations

4.5.5. Incidences sonores

Les nuisances sonores pourront provenir des chutes d'eau entre les ouvrages, des turbines d'aération et du fonctionnement des pompes dans le poste de relevage en entrée.

La réglementation sur les nuisances sonores devra être respectée.

En cas de nuisances les ouvrages pourront être capotés.

4.5.6. Incidences olfactives

Les travaux pourront entrainer des nuisances olfactives liées aux gaz d'échappement des engins de chantier.

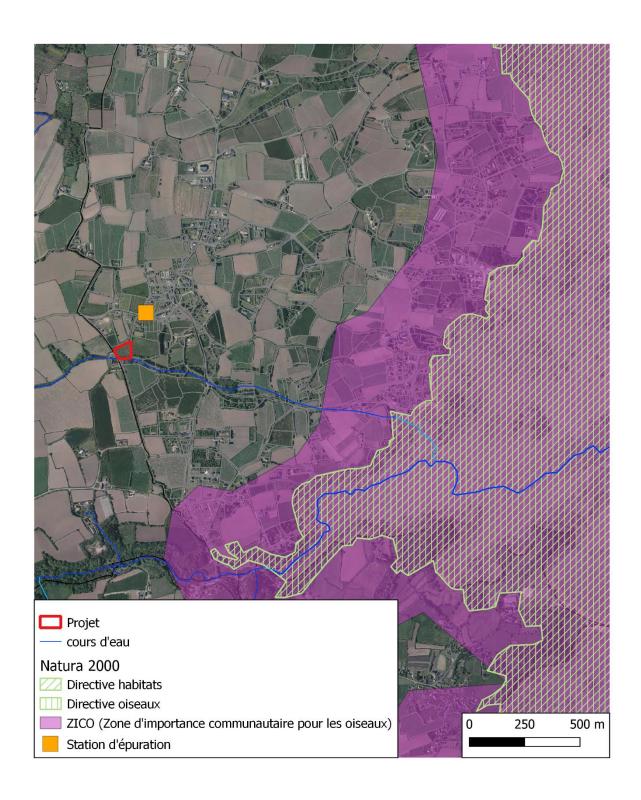
S'il s'avère que des nuisances olfactives gênantes pour le voisinage existent, le pétitionnaire veillera à les limiter au mieux, voire à les supprimer.

Les nuisances olfactives pourront provenir du prétraitement et éventuellement du stockage des boues qui peuvent dégager des odeurs en cas de dysfonctionnement. En cas de nuisances, une désodorisation pourra être mise en place.

4.5.7. Evaluation des incidences sur les sites Natura 2000

L'emprise du projet n'est concernée par aucun site Natura 2000.

En revanche, le rejet se fait dans un ruisseau qui rejoint l'estuaire du Trieux qui est classé Natura 2000 ainsi que la zone Natura 2000 Trégor Goëlo.


Le rejet se fait à plus d'1 kilomètre des zones Natura 2000 et l'étude d'acceptabilité montre qu'il n'y a pas d'impact de la future station sur les eaux littorales.

				Ave	<u>c arrêté mi</u>	<u>nistériel</u>						ec proposi	ition de no	ormes (DBC	05, DCO et	MES seule	ement)					
								Norme de	rejet de l	a station d	<u>épuration</u>											
	DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt	E. Coli		DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt	E. Coli					
	(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)	(ufc/100mL)		(mgO ₂ /L)		(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)	(ufc/100mL)					
Normes	35	200	35	10,00	10,00	15,00	15,00	100000		20	70	30	10,00	10,00	15,00	15,00	100000	Щ,				
								Concentration		ues du mil	ieu récepte	<u>ur</u>						- 0.0				
	DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt		Débit STEP	DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt		Débit STEP				
	(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)		(m³/jour)	(mgO ₂ /L)	(mgO ₂ /L)	(mg/L)	(mgN/L)	(mgNH ₄ /L)	(mgN/L)	(mgP/L)		(m³/jour)				
Janvier	1,5	10,0	2,5	0,5	0,05	0,73	0,03	14	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	14	26				
Février	1,5	10,0	2,5	0,5	0,05	0,73	0,03	13	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	13	26				
Mars	1,5	10,0	2,5	0,5	0,05	0,73	0,03	14	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	14	26				
Avril	1,5	10,0	2,5	0,5	0,05	0,73	0,03	16	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	16	26				
Mai	1,5	10,0	2,5	0,5	0,05	0,73	0,03	18	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	18	26				
Juin	1,5	10,0	2,5	0,5	0,05	0,73	0,03	23	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	23	26				
Juillet	1,5	10,0	2,5	0,5	0,05	0,73	0,03	29	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	29	26				
Août	1,5	10,1	2,5	0,5	0,05	0,73	0,03	38	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	38	26				
Septembre	1,5	10,1	2,5	0,5	0,05	0,73	0,03	43	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	43	26				
Octobre	1,5	10,0	2,5	0,5	0,05	0,73	0,03	34	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	34	26				
Novembre	1,5	10,0	2,5	0,5	0,05	0,73	0,03	23	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	23	26				
Décembre	1,5	10,0	2,5	0,5	0,05	0,73	0,03	16	26	1,5	10,0	2,5	0,5	0,05	0,73	0,03	16	26				
QMNA5	1,5	10,1	2,5	0,5	0,05	0,73	0,03	44	26	1,5	10,0	2,5	0.5	0,05	0,73	0,03	44	26				
	Avec performances attendues (sans traitement chlorrure ferrique)														Avec performances attendues (avec traitement chlorrure ferrique)							
		Avec p	erforma	nces attend	dues (sans t	traitement	chlorrure	ferrique)			Avec p	erforman	ces attend	dues (avec	traitement	chlorrure	ferrique)					
		Avec p	erforma	nces attend	dues (sans t	traitement	chlorrure		rejet de l	a station d		erforman	nces attend	dues (avec	traitement	chlorrure	ferrique)					
	DBO5	DCO	MES	NTK	N-NH ₄	NGL	Pt	Norme de E. Coli	rejet de l	a station d	épuration DCO	MES	NTK	N-NH ₄	NGL	Pt	E. Coli					
	DBO5 (mgO ₂ /L)							Norme de	rejet de l		épuration											
Normes		DCO	MES	NTK	N-NH ₄	NGL	Pt	Norme de E. Coli	rejet de l	DBO5	épuration DCO	MES	NTK	N-NH ₄	NGL	Pt	E. Coli					
Normes	(mgO ₂ /L)	DCO (mgO ₂ /L)	MES (mg/L)	NTK (mgN/L)	N-NH ₄ (mgNH ₄ /L)	NGL (mgN/L)	Pt (mgP/L)	Norme de E. Coli (ufc/100mL)	ns théorig	DBO5 (mgO ₂ /L)	DCO (mgO ₂ /L)	MES (mg/L)	NTK (mgN/L)	N-NH ₄ (mgNH ₄ /L)	NGL (mgN/L)	Pt (mgP/L)	E. Coli (ufc/100mL)					
Normes	(mgO ₂ /L)	DCO (mgO ₂ /L)	MES (mg/L)	NTK (mgN/L)	N-NH ₄ (mgNH ₄ /L)	NGL (mgN/L)	Pt (mgP/L)	Norme de E. Coli (ufc/100mL)	ns théorig Débit	DBO5 (mgO ₂ /L)	DCO (mgO ₂ /L)	MES (mg/L)	NTK (mgN/L)	N-NH ₄ (mgNH ₄ /L)	NGL (mgN/L)	Pt (mgP/L)	E. Coli (ufc/100mL)	Débit				
Normes	(mgO ₂ /L)	DCO (mgO ₂ /L)	MES (mg/L)	NTK (mgN/L) 8,00	N-NH ₄ (mgNH ₄ /L) 5,00	NGL (mgN/L) 10,00	Pt (mgP/L) 15,00	Norme de E. Coli (ufc/100mL)	ons théorig Débit STEP	DBO5 (mgO ₂ /L) 15 ues du mil	puration DCO (mgO ₂ /L) 40 ieu récepte	MES (mg/L) 20 ur	NTK (mgN/L) 8,00	N-NH ₄ (mgNH ₄ /L) 5,00	NGL (mgN/L) 10,00	Pt (mgP/L) 1,50	E. Coli (ufc/100mL)	STEP				
Normes	(mgO ₂ /L) 15 DBO5	DCO (mgO ₂ /L) 40	MES (mg/L) 20	NTK (mgN/L) 8,00	N-NH ₄ (mgNH ₄ /L) 5,00	NGL (mgN/L) 10,00	Pt (mgP/L) 15,00	Norme de E. Coli (ufc/100mL)	ns théorig Débit	DBO5 (mgO ₂ /L) 15 ues du mil DBO5	DCO (mgO ₂ /L) 40 ieu récepte	MES (mg/L) 20 ur MES	NTK (mgN/L) 8,00	N-NH ₄ (mgNH ₄ /L) 5,00	NGL (mgN/L) 10,00	Pt (mgP/L) 1,50	E. Coli (ufc/100mL)					
	(mgO ₂ /L) 15 DBO5 (mgO ₂ /L)	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L)	MES (mg/L) 20 MES (mg/L)	NTK (mgN/L) 8,00 NTK (mgN/L)	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L)	NGL (mgN/L) 10,00 NGL (mgN/L)	Pt (mgP/L) 15,00 Pt (mgP/L)	Norme de E. Coli (ufc/100mL) 100000 Concentratio	ns théorig Débit STEP (m³/jour)	DBO5 (mgO ₂ /L) 15 ues du mil DBO5 (mgO ₂ /L)	epuration DCO (mgO ₂ /L) 40 ieu récepte DCO (mgO ₂ /L)	MES (mg/L) 20 ur MES (mg/L)	NTK (mgN/L) 8,00 NTK (mgN/L)	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L)	NGL (mgN/L) 10,00 NGL (mgN/L)	Pt (mgP/L) 1,50 Pt (mgP/L)	E. Coli (ufc/100mL) 100000	STEP (m³/jour)				
Janvier	(mgO ₂ /L) 15 DBO5 (mgO ₂ /L)	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L)	MES (mg/L) 20 MES (mg/L)	NTK (mgN/L) 8,00 NTK (mgN/L)	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L) 0,05	NGL (mgN/L) 10,00 NGL (mgN/L)	Pt (mgP/L) 15,00 Pt (mgP/L) 0,03	Norme de E. Coli (ufc/100mL) 100000 Concentratio	ns théorig Débit STEP (m³/jour)	DBO5 (mgO ₂ /L) 15 ues du mil DBO5 (mgO ₂ /L)	épuration DCO (mgO ₂ /L) 40 ieu récepte DCO (mgO ₂ /L)	MES (mg/L) 20 ur MES (mg/L) 2,5	NTK (mgN/L) 8,00 NTK (mgN/L)	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L) 0,05	NGL (mgN/L) 10,00 NGL (mgN/L)	Pt (mgP/L) 1,50 Pt (mgP/L) 0,03	E. Coli (ufc/100mL) 100000	STEP (m³/jour) 26				
Janvier Février	(mgO ₂ /L) 15 DBO5 (mgO ₂ /L) 1,5 1,5	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L) 10,0 10,0	MES (mg/L) 20 MES (mg/L) 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L) 0,05 0,05	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73	Pt (mgP/L) 15,00 Pt (mgP/L) 0,03 0,03	Norme de E. Coli (ufc/100mL) 100000 Concentratio	Débit STEP (m³/jour) 26 26	DBO5 (mgO ₂ /L) 15 ues du mil DBO5 (mgO ₂ /L) 1,5 1,5	epuration DCO (mgO ₂ /L) 40 leu récepte DCO (mgO ₂ /L) 10,0 10,0	MES (mg/L) 20 ur MES (mg/L) 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L) 0,05 0,05	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73	Pt (mgP/L) 1,50 Pt (mgP/L) 0,03 0,03	E. Coli (ufc/100mL) 100000	STEP (m³/jour) 26 26				
Janvier Février Mars	(mgO ₂ /L) 15 DBO5 (mgO ₂ /L) 1,5 1,5	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L) 10,0 10,0	MES (mg/L) 20 MES (mg/L) 2,5 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L) 0,05 0,05 0,05	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73 0,73	Pt (mgP/L) 15,00 Pt (mgP/L) 0,03 0,03 0,03	Norme de E. Coli (ufc/100mL) 100000 Concentratio	Débit STEP (m³/jour) 26 26 26	DBO5 (mgO ₂ /L) 15 ues du mil DBO5 (mgO ₂ /L) 1,5 1,5	épuration DCO (mgO ₂ /L) 40 leu récepte DCO (mgO ₂ /L) 10,0 10,0	MES (mg/L) 20 ur MES (mg/L) 2,5 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L) 0,05 0,05 0,05	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73 0,73	Pt (mgP/L) 1,50 Pt (mgP/L) 0,03 0,03 0,03	E. Coli (ufc/100mL) 100000	STEP (m³/jour) 26 26 26				
Janvier Février Mars Avril	(mgO ₂ /L) 15 DBOS (mgO ₂ /L) 1,5 1,5 1,5	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L) 10,0 10,0 10,0	MES (mg/L) 20 MES (mg/L) 2,5 2,5 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5 0,5	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L) 0,05 0,05 0,05 0,05	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73 0,73	Pt (mgP/L) 15,00 Pt (mgP/L) 0,03 0,03 0,03 0,03 0,03	Norme de E. Coli (ufc/100mL) 100000 Concentratio 14 13 14 16	ns théorig Débit STEP (m³/jour) 26 26 26 26	DBO5 (mgO ₂ /L) 15 ues du mil DBO5 (mgO ₂ /L) 1,5 1,5 1,5	épuration DCO (mgO ₂ /L) 40 leu récepte DCO (mgO ₂ /L) 10,0 10,0 10,0	MES (mg/L) 20 ur MES (mg/L) 2,5 2,5 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5 0,5	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L) 0,05 0,05 0,05 0,05	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73 0,73	Pt (mgP/L) 1,50 Pt (mgP/L) 0,03 0,03 0,03 0,03	E. Coli (ufc/100mL) 100000	STEP (m³/jour) 26 26 26 26 26				
Janvier Février Mars Avril Mai	(mgO ₂ /L) 15 DBOS (mgO ₂ /L) 1,5 1,5 1,5 1,5	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L) 10,0 10,0 10,0 10,0	MES (mg/L) 20 MES (mg/L) 2,5 2,5 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5 0,5 0,5	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L) 0,05 0,05 0,05 0,05 0,05 0,05	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73 0,73 0,73	Pt (mgP/L) 15,00 Pt (mgP/L) 0,03 0,03 0,03 0,03 0,03 0,03	Norme de E. Coli (ufc/100mL) 100000 Concentratio 14 13 14 16 18	Débit STEP (m³/jour) 26 26 26 26 26	DBO5 (mgO2/L) 15 ues du mil DBO5 (mgO2/L) 1,5 1,5 1,5 1,5	épuration DCO (mgO ₂ /L) 40 ieu récepte DCO (mgO ₂ /L) 10,0 10,0 10,0 10,0 10,0	MES (mg/L) 20 ur MES (mg/L) 2,5 2,5 2,5 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5 0,5 0,5	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L) 0,05 0,05 0,05 0,05 0,05	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73 0,73 0,73	Pt (mgP/L) 1,50 Pt (mgP/L) 0,03 0,03 0,03 0,03 0,03	E. Coli (ufc/100mL) 100000 14 13 14 16 18	STEP (m³/jour) 26 26 26 26 26 26				
Janvier Février Mars Avril Mai Juin	(mgO ₂ /L) 15 DBO5 (mgO ₂ /L) 1,5 1,5 1,5 1,5 1,5 1,5	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L) 10,0 10,0 10,0 10,0 10,0	MES (mg/L) 20 MES (mg/L) 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5 0,5 0,5 0,5	N-NH4 (mgNH4/1) 5,00 N-NH4 (mgNH4/1) 0,05 0,05 0,05 0,05 0,05	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73 0,73 0,73 0,73	Pt (mgP/L) 15,00 Pt (mgP/L) 0,03 0,03 0,03 0,03 0,03 0,03	Norme de E. Coli (ufc/100mL) 100000 Concentratio 14 13 14 16 18 23	Débit STEP (m³/jour) 26 26 26 26 26 26	DBOS (mgO ₂ /L) 15 ues du mil DBOS (mgO ₂ /L) 1,5 1,5 1,5 1,5	epuration DCO (mgOz/L) 40 ieu récepte DCO (mgOz/L) 10,0 10,0 10,0 10,0 10,0	MES (mg/L) 20 ur MES (mg/L) 2,5 2,5 2,5 2,5 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5 0,5 0,5 0,5	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,05 0,05 0,05 0,05 0,05	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73 0,73 0,73 0,73	Pt (mgP/L) 1,50 Pt (mgP/L) 0,03 0,03 0,03 0,03 0,03 0,03	E. Coli (ufc/100mL) 100000 14 13 14 16 18	STEP (m³/jour) 26 26 26 26 26 26 26				
Janvier Février Mars Avril Mai Juin	(mgO ₂ /L) DBO5 (mgO ₂ /L) 1,5 1,5 1,5 1,5 1,5 1,5 1,5	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L) 10,0 10,0 10,0 10,0 10,0	MES (mg/L) 20 MES (mg/L) 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5 0,5 0,5 0,5	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,05 0,05 0,05 0,05 0,05 0,05	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73 0,73 0,73 0,73 0,73	Pt (mgP/L) 15,00 Pt (mgP/L) 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,0	Norme de E. Coli (ufc/100mL) 100000 Concentratio 14 13 14 16 18 23 29	ns théorig Débit STEP (m³/jour) 26 26 26 26 26 26 26	DBO5 (mgO2/L) 15 ues du mil DBO5 (mgO2/L) 1,5 1,5 1,5 1,5 1,5	epuration DCO (mgO ₂ /L) 40 eu récepte DCO (mgO ₂ /L) 10,0 10,0 10,0 10,0 10,0 10,0 10,0	MES (mg/L) 20 ur MES (mg/L) 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5 0,5 0,5 0,5	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L) 0,05 0,05 0,05 0,05 0,05 0,05 0,05	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73 0,73 0,73 0,73 0,73	Pt (mgP/L) 1,50 Pt (mgP/L) 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,0	E. Coli (ufc/100mL) 100000 14 13 14 16 18 23 29	STEP (m³/jour) 26 26 26 26 26 26 26 26				
Janvier Février Mars Avril Mai Juin Juillet Août	(mgO ₂ /L) 15 DBOS (mgO ₂ /L) 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L) 10,0 10,0 10,0 10,0 10,0 10,0	MES (mg/L) 20 MES (mg/L) 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5 0,5 0,5 0,5 0,5 0,5	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,05 0,05 0,05 0,05 0,05 0,05 0,05	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73 0,73 0,73 0,73 0,73 0,73	Pt (mgP/L) 15,00 Pt (mgP/L) 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,0	Norme de E. Coli (ufc/100mL) 100000 Concentratio 114 113 114 116 118 229 38	ns théorig Débit STEP (m³/jour) 26 26 26 26 26 26 26 26	DBO5 (mgO2/L) 15 ues du mil DBO5 (mgO2/L) 1,5 1,5 1,5 1,5 1,5 1,5 1,5	epuration DCO (mgO ₂ /L) 40 eu récepte DCO (mgO ₂ /L) 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,	MES (mg/L) 20 ur MES (mg/L) 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5 0,5 0,5 0,5 0,5 0,5	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L) 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,0	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73 0,73 0,73 0,73 0,73 0,73 0,73	Pt (mgP/L) 1,50 Pt (mgP/L) 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,0	E. Coli (ufc/100mL) 100000 14 13 14 16 18 23 29 38	STEP (m³/jour) 26 26 26 26 26 26 26 26 26 26				
Janvier Février Mars Avril Mai Juin Juillet Août Septembre	(mgO ₂ /L) DBO5 (mgO ₂ /L) 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,	DCO (mgOz/L) 40 DCO (mgOz/L) 10,0 10,0 10,0 10,0 10,0 10,0 10,0	MES (mg/L) 20 MES (mg/L) 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5 0,5 0,5 0,5 0,5	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L) 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,0	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73 0,73 0,73 0,73 0,73 0,73 0,73	Pt (mgP/L) 15,00 Pt (mgP/L) 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,0	Norme di E. Coli (ufc/100mL) 1000000 Concentratio 14 13 14 16 18 23 29 38 43	ns théorig Débit STEP (m³/jour) 26 26 26 26 26 26 26 26 26 26	DBO5 (mgO2/L) 15 ues du mil DBO5 (mgO2/L) 1,5 1,5 1,5 1,5 1,5 1,5	epuration DCO (mgOz/L) 40 ieu récepte DCO (mgOz/L) 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,	MES (mg/L) 20 ur MES (mg/L) 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5 0,5 0,5 0,5 0,5	N-NH4 (mgNH4/L) 5,00 N-NH4 (mgNH4/L) 0,05 0,05 0,05 0,05 0,05 0,05 0,05	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73 0,73 0,73 0,73 0,73 0,73	Pt (mgP/L) 1,50 Pt (mgP/L) 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,0	E. Coli (ufc/100mL) 100000 14 14 13 14 16 18 23 29 38	STEP (m³/jour) 26 26 26 26 26 26 26 26 26				
Janvier Février Mars Avril Mai Juin Juillet Août Septembre Octobre	(mgO ₂ /L) DBO5 (mgO ₂ /L) 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,	DCO (mgOz/L) 40 DCO (mgOz/L) 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,	MES (mg/L) 20 MES (mg/L) 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L) 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,0	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73 0,73 0,73 0,73 0,73 0,73 0,73	Pt (mgP/L) 15,00 Pt (mgP/L) 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,0	Norme de E. Coli (ufc/100mL) 100000 Concentratio 14 13 14 16 18 23 29 38 43 34	ons théorig Débit STEP (m³/jour) 26 26 26 26 26 26 26 26 26 26 26 26 26	DBO5 (mgOz/L) 15 ues du mil DBO5 (mgOz/L) 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	epuration DCO (mgOz/L) 40 ieu récepte DCO (mgOz/L) 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,	MES (mg/L) 20 UIT MES (mg/L) 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5 0,5 0,5 0,5 0,5 0,5	N-NH ₄ (mgNH ₄ /L) 5,00 N-NH ₄ (mgNH ₄ /L) 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,0	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73 0,73 0,73 0,73 0,73 0,73 0,73	Pt (mgP/L) 1,50 Pt (mgP/L) 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,0	14 13 14 16 18 29 38 43 34	STEP (m³/jour) 26 26 26 26 26 26 26 26 26 26 26				
Janvier Février Mars Avril Mai Juin Juillet Août Septembre Octobre Novembre	(mgO ₂ /L) 15 DBOS (mgO ₂ /L) 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	DCO (mgO ₂ /L) 40 DCO (mgO ₂ /L) 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,	MES (mg/L) 20 MES (mg/L) 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	N-NH4 (mgNH4/1) 5,00 N-NH4 (mgNH4/1) 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,0	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73 0,73 0,73 0,73 0,73 0,73 0,73	Pt (mgP/L) 15,00 Pt (mgP/L) 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,0	Norme de E. Coli (ufc/100mL) 100000 Concentratio 14 13 14 16 18 23 29 38 43 34 23	ns théorig Débit STEP (m³/jour) 26 26 26 26 26 26 26 26 26 26 26 26 26	DBO5 (mgO ₂ /L) 15 ues du mil DBO5 (mgO ₂ /L) 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	epuration DCO (mg0z/L) 40 DCO (mg0z/L) DCO (mg0z/L) 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,	MES (mg/L) 20 ur MES (mg/L) 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5	NTK (mgN/L) 8,00 NTK (mgN/L) 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	N-NH4 (mgNH4/1) 5,00 N-NH4 (mgNH4/1) 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,0	NGL (mgN/L) 10,00 NGL (mgN/L) 0,73 0,73 0,73 0,73 0,73 0,73 0,73 0,73	Pt (mgP/L) 1,50 Pt (mgP/L) 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,0	14 13 14 16 18 23 29 38 43 34 23	STEP (m³/jour) 26 26 26 26 26 26 26 26 26 26 26 26 26				

Tableau 5 Acceptabilité à l'aval de la confluence avec le Trieux

carte 14 Zones Natura 2000 à Lanmodez

4.6. RESPECTER LA CONDITION TENANT A L'ABSENCE DE TOUTE URBANISATION NOUVELLE

La commune de Lanmodez dispose d'un plan local d'urbanisme approuvé en 2005. Le bourg est concerné par une zone à urbaniser à court terme au nord-est. Les zones à urbaniser à long terme sont gelées en attendant le PLUi. Le développement de la commune pourra se faire à l'ouest du bourg. 5 parcelles peuvent encore accueillir des constructions en zone urbanisée dans le bourg actuellement.

La station d'épuration de Lanmodez dysfonctionne, son traitement est insuffisant et provoque des nuisances olfactives pour le voisinage (école et gîte notamment).

L'urbanisation future liée au SCoT du Trégor et au PLUi entraînera de nouveaux raccordements dans le futur. Il est prévu la construction de 50 logements supplémentaires à long terme sur la commune. La nouvelle station d'épuration a été dimensionnée en prenant en compte les perspectives de développement de la commune afin que les eaux usées puissent être traitées à long terme. Le zonage d'assainissement prévoit également le raccordement d'un secteur du bourg comprenant 11 habitations existantes raccordables gravitairement vers la nouvelle station d'épuration.

Les travaux nécessaires ne sont donc pas en lien avec une augmentation de capacité mais visent tout d'abord une amélioration du fonctionnement actuel.

5. NOMS ET QUALITES PRECISES ET COMPLETES DU OU DES AUTEURS DE L'ETUDE ET DES ETUDES QUI ONT CONTRIBUE A SA REALISATION

PETITIONNAIRE

LANNION TREGOR COMMUNAUTE 1, rue Monge BP 10761 22307 LANNION CEDEX

Tél: 02.96.05.09.00 Fax: 02.96.05.09.01

AUTEURS DES ETUDES

- Sophie COLLET, chargée d'études, bureau d'études eaux et assainissement de Lannion-Trégor Communauté (rédaction du dossier de demande de dérogation),
- Benjamin FLORES, chef de projet sur la station d'épuration de Lanmodez (étude sur station d'épuration),
- Pierre-Yves MORICE, dessinateur, bureau d'études eaux et assainissement de Lannion-Trégor Communauté (plans de masse).

ANNEXES

ANNEXE 1 PLAN DE MASSE DU PROJET

ANNEXE 2 NOTICE D'INTEGRATION PAYSAGERE