RÉPUBLIQUE FRANÇAISE

Ministère de la transition écologique et solidaire

Arrêté du []

modifiant l'arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des article R. 212-10, R. 212-11 et R. 212-18 du code de l'environnement

NOR : [...]

Le ministre d'Etat, ministre de la transition écologique et solidaire,

Vu la directive 2000/60/CE du Parlement européen et du Conseil du 23 octobre 2000 établissant un cadre pour une politique communautaire dans le domaine de l'eau ;

Vu la directive 2008/105/CE du Parlement européen et du Conseil du 16 décembre 2008 établissant des normes de qualité environnementale dans le domaine de l'eau ;

Vu la décision 2008/915/CE de la Commission européenne du 30 octobre 2008 relative aux valeurs des systèmes de classification des Etats membres et aux résultats de l'interétalonnage ;

Vu le code de l'environnement, notamment les articles L. 211-1, L. 211-2, L. 211-3 et du L. 211-4, R. 212-5, R. 212-10, R. 212-11, R. 212-18, R. 212-22, R. 213-12-2;

Vu l'arrêté du 12 janvier 2010 modifié relatif aux méthodes et aux critères à mettre en œuvre pour délimiter et classer les masses d'eau et dresser l'état des lieux, prévu à l'article R. 212-5 du code de l'environnement ;

Vu l'arrêté du 25 janvier 2010 modifié établissant le programme de surveillance de l'état des eaux en application de l'article R. 212-22 du code de l'environnement ;

Vu les observations formulées lors de la consultation du public réalisée du , en application de l'article L.123-19-1 du code de l'environnement ;

Vu l'avis de la mission interministérielle de l'eau en date du

Arrête:

Article 1er

Au II de l'article 11 de l'arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des articles R. 212-10, R. 212-11 et R. 212-18 du code de l'environnement susvisé, les mots : « Le choix des sites et » sont supprimés et le mot : « sont » est remplacé par le mot : « est ».

Article 2

Les annexes à l'arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des articles R. 212-10, R. 212-11 et R. 212-18 du code de l'environnement susvisé sont remplacées par les annexes du présent arrêté.

Article 3

Le directeur de l'eau et de la biodiversité et le directeur général de la santé sont chargés, chacun en ce qui le concerne, de l'exécution du présent arrêté, qui sera publié au *Journal officiel* de la République française.

Fait le [].

Le ministre d'Etat, ministre de la transition écologique et solidaire, Pour le ministre et par délégation : Le directeur de l'eau et de la biodiversité, T. VATIN

ANNEXE 1

DÉFINITIONS NORMATIVES POUR LA CLASSIFICATION DE L'ÉTAT ET DU POTENTIEL ÉCOLOGIQUES DES EAUX DE SURFACE

1. Éléments de qualité pour la classification de l'état écologique des eaux de surface

L'état écologique des eaux de surface est évalué en fonction de l'état de chacun des éléments de qualité biologique, physico-chimique et hydro-morphologique prévus dans le tableau 1 ciaprès, dès lors qu'ils sont pertinents pour le type de masse d'eau considéré conformément à l'arrêté du 25 janvier 2010 pris en application de l'article R. 212-22 du code de l'environnement.

Tableau 1 : éléments de qualité pour la classification de l'état écologique des eaux de surface et paramètres constitutifs pour chaque élément de qualité

1. Cours d'eau

- 1.1. Éléments de qualité biologique
 - **1.1.1.** Phytoplancton: composition et abondance
 - **1.1.2.** Macrophytes: composition et abondance
 - **1.1.3.** Phytobenthos: composition et abondance
 - **1.1.4.** Faune benthique invertébrée : composition et abondance
 - 1.1.5. Ichtyofaune : composition, abondance et structure de l'âge
- **1.2.** Éléments de qualité hydromorphologique soutenant les éléments de qualité biologique
 - **1.2.1.** Régime hydrologique
 - Quantité et dynamique du débit d'eau
 - Connexion aux masses d'eau souterraine
 - 1.2.2. Continuité de la rivière
 - **1.2.3.** Conditions morphologiques
 - Variation de la profondeur et de la largeur de la rivière
 - Structure et substrat du lit
 - Structure de la rive
- **1.3.** Éléments de qualité chimique et physico-chimique soutenant les éléments de qualité biologique
 - 1.3.1. Eléments généraux
 - Température de l'eau
 - Bilan d'oxygène
 - Salinité
 - État d'acidification
 - Concentration en nutriments
 - **1.3.2.** Polluants spécifiques
 - Pollution par tous polluants synthétiques spécifiques autres que les substances dangereuses prioritaires, recensés comme étant déversés en quantités significatives dans la masse d'eau
 - Pollution par tous polluants non synthétiques spécifiques, autres que les substances prioritaires, recensés comme étant déversés en quantités significatives dans la masse d'eau

2. Plans d'eau

- 2.1. Éléments de qualité biologique
 - **2.1.1.** Phytoplancton: composition, abondance et biomasse
 - **2.1.2.** Macrophytes: composition et abondance
 - **2.1.3.** Phytobenthos: composition et abondance
 - **2.1.4.** Faune benthique invertébrée : composition et abondance
 - **2.1.5.** Ichtyofaune : composition, abondance et structure de l'âge
- **2.2.** Éléments de qualité hydromorphologique soutenant les éléments de qualité biologique
 - **2.2.1.** Régime hydrologique
 - Quantité et dynamique du débit d'eau
 - Temps de résidence
 - Connexion à la masse d'eau souterraine
 - **2.2.2.** Conditions morphologiques
 - Variation de la profondeur du lac
 - Quantité, structure et substrat du lit
 - Structure de la rive
- **2.3.** Éléments de qualité chimique et physico-chimique soutenant les éléments de qualité biologique
 - **2.3.1.** Éléments généraux
 - Transparence
 - Température de l'eau
 - Bilan d'oxygène
 - Salinité
 - État d'acidification
 - Concentration en nutriments
 - 2.3.2. Polluants spécifiques
 - Pollution par tous polluants synthétiques spécifiques, autres que les substances prioritaires, recensés comme étant déversés en quantités significatives dans la masse d'eau
 - Pollution par tous polluants non synthétiques spécifiques, autres que les substances prioritaires, recensés comme étant déversés en quantités significatives dans la masse d'eau

3. Eaux de transition

- 3.1. Éléments biologique
 - **3.1.1.** Phytoplancton : composition, abondance et biomasse (pour les masses d'eau non turbides)
 - **3.1.2.** Flores autre que phytoplancton : composition et abondance de la flore aquatique
 - 3.1.3. Faune benthique invertébrée : composition et abondance
 - **3.1.4.** Ichtyofaune : composition et abondance
- **3.2.** Éléments hydromorphologique soutenant biologie
 - 3.2.1. Conditions morphologiques
 - Variation de la profondeur
 - Quantité, structure et substrat du lit
 - Structure de la zone intertidale
 - 3.2.2. Régime des marées
 - Débit d'eau douce

- Exposition aux vagues
- 3.3. Éléments chimique et physico-chimique soutenant biologie
 - **3.3.1.** Éléments généraux
 - Transparence
 - Température
 - Bilan d'oxygène
 - Salinité
 - Concentration en nutriments
 - 3.3.2. Polluants spécifiques
 - Pollution par tous polluants synthétiques spécifiques, autres que les substances prioritaires, recensés comme étant déversés en quantités significatives dans la masse d'eau
 - Pollution par tous polluants non synthétiques spécifiques, autres que les substances prioritaires, recensés comme étant déversés en quantités significatives dans la masse d'eau

4. Eaux côtières

- **4.1.** Éléments biologique
 - **4.1.1.** Phytoplancton: composition, abondance et biomasse
 - **4.1.2.** Flore aquatique autre que le phytoplancton : composition et abondance
 - **4.1.3.** Faune benthique invertébrée : composition et abondance
- **4.2.** Éléments hydromorphologiques soutenant biologie
 - **4.2.1.** Conditions morphologiques
 - Variations de la profondeur
 - Structure et substrat de la côte
 - Structure de la zone intertidale
 - **4.2.2.** Régime des marées
 - Direction des courants dominants
 - Exposition aux vagues
- **4.3.** Éléments chimique et physico-chimique soutenant biologie
 - **4.3.1.** Éléments généraux
 - Transparence
 - Température de l'eau
 - Bilan d'oxygène
 - Salinité
 - Concentration en nutriments
 - **4.3.2.** Polluants spécifiques
 - Pollution par tous polluants synthétiques spécifiques, autres que les substances prioritaires, recensés comme étant déversés en quantités significatives dans la masse d'eau
 - Pollution par tous polluants non synthétiques spécifiques, autres que les substances prioritaires, recensés comme étant déversés en quantités significatives dans la masse d'eau

5. Masses d'eau fortement modifiées et artificielles

Les éléments de qualité applicables aux masses d'eau de surface artificielles et fortement modifiées sont ceux qui sont applicables à celle des quatre catégories d'eau de surface naturelle qui ressemble le plus à la masse d'eau de surface artificielle, ou fortement modifiée, concernée.

2. <u>Définitions des classes d'état écologique des eaux de surface</u>

Le tableau 2 suivant donne une définition générale de la qualité écologique.

Aux fins de la classification, les parties 2.1 à 2.4 de la présente annexe établissent, à la lumière du tableau 2, les définitions du très bon état écologique, du bon état écologique et de l'état écologique moyen en ce qui concerne les rivières (partie 2.1), les lacs (partie 2.2), les eaux de transition (partie 2.3) et les eaux côtières (partie 2.4). Quant à la partie 2.5, elle fixe la définition du potentiel écologique maximal, du bon potentiel écologique et du potentiel écologique moyen des masses d'eau fortement modifiées ou artificielles.

Les définitions du très bon état écologique, du bon état écologique et de l'état écologique moyen en ce qui concerne les rivières s'appliquent plus généralement aux cours d'eau. Les définitions du très bon état écologique, du bon état écologique et de l'état écologique moyen en ce qui concerne les lacs s'appliquent plus généralement aux plans d'eau.

Tableau 2 : définition générale des classes d'état écologique des cours d'eau, plans d'eau, eaux de transition et eaux côtières en fonction des éléments de qualité

	TRÉS BON ÉTAT	BON ÉTAT	ÉTAT MOYEN	ÉTAT MÉDIOCRE	ÉTAT MAUVAIS
DÉFINITION GÉNÉRALE	Les valeurs des éléments de qualité biologique pour la masse d'eau de surface correspondent à celles normalement associées à ce type dans des conditions non perturbées et n'indiquent pas ou très peu de distorsions. Il s'agit des conditions et communautés caractéristiques. Pas ou très peu d'altérations anthropogéniques des valeurs des éléments de qualité physico-chimiques et hydromorphologiques applicables au type de masse d'eau de surface par rapport aux valeurs normalement associées à ce type dans des conditions non perturbées.	Les valeurs des éléments de qualité biologique applicables au type de masse d'eau de surface montrent de faibles niveaux de distorsion résultant de l'activité humaine, mais ne s'écartent que légèrement de celles normalement associées à ce type de masse d'eau de surface dans des conditions non perturbées.	Les valeurs des éléments de qualité biologique applicables au type de masse d'eau de surface s'écartent modérément de celles normalement associées à ce type de masse d'eau de surface dans des conditions non perturbées. Les valeurs montrent des signes modérés de distorsion résultant de l'activité humaine et sont sensiblement plus perturbées que dans des conditions de bonne qualité.	Les eaux montrant des signes d'altérations importantes des valeurs des éléments de qualité biologique applicables au type de masse d'eau de surface et dans lesquelles les communautés biologiques pertinentes s'écartent sensiblement de celles normalement associées au type de masse d'eau de surface dans des conditions non perturbées sont classées comme médiocres.	Les eaux montrant des signes d'altérations graves des valeurs des éléments de qualité biologiques applicables au type de masse d'eau de surface et dans lesquelles font défaut des parties importantes des communautés biologiques pertinentes, normalement associées au type de masse d'eau de surface dans des conditions non perturbées, sont classées comme mauvaises.

2.1. Définition des classes d'état écologique des cours d'eau

2.1.1. Éléments de qualité biologique pour les cours d'eau

Tableau 3 : définition des classes d'état des cours d'eau pour les éléments de qualité biologique

ÉLÉMENT	TRÉS BON ÉTAT	BON ÉTAT	ÉTAT MOYEN
PHYTOPLANCTON (pour les très grands cours d'eau)	La composition taxinomique du phytoplancton correspond totalement ou presque totalement aux conditions non perturbées. L'abondance moyenne de phytoplancton est totalement en rapport avec les conditions physico-chimiques caractéristiques et n'est pas de nature à altérer sensiblement les conditions de transparence caractéristiques. L'efflorescence planctonique est d'une fréquence et d'une intensité qui correspondent aux conditions physico-chimiques caractéristiques.	Légères modifications dans la composition et l'abondance des taxons planctoniques par comparaison avec les communautés caractéristiques. Ces changements n'indiquent pas de croissance accélérée des algues entraînant des perturbations indésirables de l'équilibre des organismes présents dans la masse d'eau ou de la qualité physico-chimique de l'eau ou du sédiment. La fréquence et l'intensité de l'efflorescence planctonique peuvent augmenter légèrement.	La composition des taxons planctoniques diffère modérément des communautés caractéristiques. L'abondance est modérément perturbée et peut être de nature à produire une forte perturbation indésirable des valeurs des autres éléments de qualité biologique et physico-chimique. La fréquence et l'intensité de l'efflorescence planctonique peuvent augmenter modérément. Une efflorescence persistante peut se produire durant les mois d'été.
MACROPHYTES ET PHYTOBENTHOS	La composition taxinomique correspond totalement ou presque totalement aux conditions non perturbées. Pas de modifications détectables dans l'abondance moyenne macrophytique et phytobenthique.	Légères modifications dans la composition et l'abondance des taxons macrophytiques et phytobenthiques par rapport aux communautés caractéristiques. Ces changements n'indiquent pas de croissance accélérée du phytobenthos ou de formes supérieures de vie végétale entraînant des perturbations indésirables de l'équilibre des organismes présents dans la masse d'eau ou de la qualité physico-chimique de l'eau ou du sédiment. La communauté phytobenthique n'est pas perturbée par des touffes et couches bactériennes dues à des activités anthropogéniques.	La composition des taxons macrophytiques et phytobenthiques diffère modérément de la communauté caractéristique et est sensiblement plus perturbée que dans le bon état. Des modifications modérées de l'abondance macrophytique et phytobenthique sont perceptibles. La communauté phytobenthique peut être perturbée et, dans certains cas, déplacée par des touffes et couches bactériennes dues à des activités anthropogéniques.

ÉLÉMENT	TRÉS BON ÉTAT	BON ÉTAT	ÉTAT MOYEN
FAUNE BENTHIQUE INVERTÉBRÉE	La composition et l'abondance taxinomiques correspondent totalement ou presque totalement aux conditions non perturbées. Le ratio des taxons sensibles aux perturbations par rapport aux taxons insensibles n'indique aucune détérioration par rapport aux niveaux non perturbés. Le niveau de diversité des taxons d'invertébrés n'indique aucune détérioration par rapport aux niveaux non perturbés.	Légères modifications dans la composition et l'abondance des taxons d'invertébrés par rapport aux communautés caractéristiques. Le ratio des taxons sensibles aux perturbations par rapport aux taxons insensibles indique une légère détérioration par rapport aux niveaux non perturbés. Le niveau de diversité des taxons d'invertébrés indique de légères détériorations par rapport aux niveaux non perturbés.	La composition et l'abondance des taxons d'invertébrés diffèrent modérément de celles des communautés caractéristiques. D'importants groupes taxinomiques de la communauté caractéristique font défaut. Le ratio des taxons sensibles aux perturbations par rapport aux taxons insensibles et le niveau de diversité des taxons d'invertébrés sont sensiblement inférieur, au niveau caractéristique et nettement inférieurs à ceux du bon état.
ICHTYOFAUNE	La composition et l'abondance des espèces correspondent totalement ou presque totalement aux conditions non perturbées. Toutes les espèces caractéristiques sensibles aux perturbations sont présentes. Les structures d'âge des communautés n'indiquent guère de perturbation anthropogénique et ne révèlent pas de troubles dans la reproduction ou dans le développement d'une espèce particulière.	Légères modifications dans la composition et l'abondance des espèces par rapport aux communautés caractéristiques, en raison d'effets anthropogéniques sur les éléments de qualité physico-chimique et hydromorphologique. Les structures d'âge des communautés indiquent des signes de perturbations dus aux effets anthropogéniques sur les éléments de qualité physico-chimique et hydromorphologique et, dans certains cas, révèlent des troubles dans la reproduction ou dans le développement d'une espèce particulière, en ce sens que, certaines classes d'âge peuvent faire défaut.	La composition et l'abondance des espèces diffèrent modérément de celles des communautés caractéristiques, en raison d'effets anthropogéniques sur les éléments de qualité physico-chimique ou hydromorphologique. Les structures d'âge des communautés indiquent des signes importants de perturbation anthropogénique, en ce sens qu'une proportion modérée de l'espèce caractéristique est absente ou très peu abondante.

2.1.2. Éléments de qualité hydromorphologique pour les cours d'eau

Tableau 4 : définition des classes d'état des cours d'eau pour les éléments de qualité hydromorphologique

ÉLÉMENT	ÉLÉMENT TRÉS BON ÉTAT		ÉTAT MOYEN
REGIME HYDROLOGIQUE La quantité et la dynamique du débit, et la connexion résultante aux eaux souterraines, correspondent totalement ou presque totalement aux conditions non perturbées.		Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.
CONTINUITE DE LA RIVIERE	La continuité de la rivière n'est pas perturbée par des activités anthropogéniques et permet une migration non perturbée des organismes aquatiques et le transport de sédiments.	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.
CONDITIONS MORPHOLOGIQUES	Les types de chenaux, les variations de largeur et de profondeur, la vitesse d'écoulement, l'état du substrat et tant la structure que l'état des rives correspondent totalement ou presque totalement aux conditions non perturbées.	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.

2.1.3. Éléments de qualité physico-chimique pour les cours d'eau

Tableau 5 : définition des classes d'état des cours d'eau pour les éléments de qualité physico-chimique

ÉLÉMENT	TRÉS BON ÉTAT	BON ÉTAT	ÉTAT MOYEN
CONDITIONS GENERALES	Les valeurs des éléments physico-chimiques correspondent totalement ou presque totalement aux conditions non perturbées. Les concentrations de nutriments restent dans la fourchette normalement associée aux conditions non perturbées. Les niveaux de salinité, le pH, le bilan d'oxygène, la capacité de neutralisation des acides et la température n'indiquent pas de signes de perturbation anthropogénique et restent dans la fourchette normalement associée aux conditions non perturbées.	La température, le bilan d'oxygène, le pH, la capacité de neutralisation des acides et la salinité ne dépassent pas les normes établies pour assurer le fonctionnement de l'écosystème caractéristique et pour atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique. Les concentrations de nutriments ne dépassent pas les normes établies pour assurer le fonctionnement de l'écosystème caractéristique et pour atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.
POLLUANTS SYNTHETIQUES SPECIFIQUES		Concentrations ne dépassant pas les normes de qualité environnementale définies dans le présent arrêté	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.
POLLUANTS NON SYNTHETIQUES SPECIFIQUES		Concentrations ne dépassant pas les normes de qualité environnementale définies dans le présent arrêté	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.

2.2. Définitions des classes d'état écologique pour les plans d'eau

2.2.1. Éléments de qualité biologique pour les plans d'eau

Tableau 6 : définition des classes d'état des plans d'eau pour les éléments de qualité biologique

ÉLÉMENT	TRÉS BON ÉTAT	BON ÉTAT	ÉTAT MOYEN
PHYTOPLANCTON	La composition taxinomique et l'abondance du phytoplancton correspondent totalement ou presque totalement aux conditions non perturbées. La biomasse moyenne de phytoplancton correspond aux conditions physicochimiques caractéristiques et n'est pas de nature à altérer sensiblement les conditions de transparence caractéristiques. L'efflorescence planctonique est d'une fréquence et d'une intensité qui correspondent aux conditions physicochimiques caractéristiques.	Légères modifications dans la composition et l'abondance des taxons planctoniques par comparaison avec les communautés caractéristiques. Ces changements n'indiquent pas de croissance accélérée des algues entraînant des perturbations indésirables de l'équilibre des organismes présents dans la masse d'eau ou de la qualité physico-chimique de l'eau ou du sédiment. La fréquence et l'intensité de l'efflorescence planctonique caractéristique peuvent augmenter légèrement.	La composition et l'abondance des taxons planctoniques diffèrent modérément de celles des communautés caractéristiques. L'abondance est modérément perturbée et peut être de nature à produire une forte perturbation indésirable des valeurs d'autres éléments de qualité biologique et de la qualité physicochimique de l'eau ou du sédiment. La fréquence et l'intensité de l'efflorescence planctonique peuvent augmenter modérément. Une efflorescence persistante peut se produire durant les mois d'été.
MACROPHYTES ET PHYTOBENTHOS	La composition taxinomique correspond totalement ou presque totalement aux conditions non perturbées. Pas de modifications détectables dans l'abondance moyenne macrophytique et phytobenthique.	Légères modifications dans la composition et l'abondance des taxons macrophytiques et phytobenthiques par rapport aux communautés caractéristiques. Ces changements n'indiquent pas de croissance accélérée du phytobenthos ou de formes supérieures de vie végétale entraînant des perturbations indésirables de l'équilibre des organismes présents dans la masse d'eau ou de la qualité physico-chimique de l'eau. La communauté phytobenthique n'est pas perturbée par des touffes et couches bactériennes dues à des activités anthropogéniques.	La composition des taxons macrophytiques et phytobenthiques diffère modérément de celle de la communauté caractéristique et est sensiblement plus perturbée que dans le bon état. Des modifications modérées de l'abondance moyenne macrophytique et phytobenthique sont perceptibles. La communauté phytobentique peut être perturbée et, dans certains cas, déplacée par des touffes et couches bactériennes dues à des activités anthropogéniques.

ÉLÉMENT	TRÉS BON ÉTAT	BON ÉTAT	ÉTAT MOYEN
FAUNE BENTHIQUE INVERTÉBRÉE	La composition et l'abondance taxinomiques correspondent totalement ou presque totalement aux conditions non perturbées. Le ratio des taxons sensibles aux perturbations par rapport aux taxons insensibles n'indique aucune détérioration par rapport aux niveaux non perturbés. Le niveau de diversité des taxons d'invertébrés n'indique aucune détérioration par rapport aux niveaux non perturbés.	Légères modifications dans la composition et l'abondance des taxons d'invertébrés par rapport à celles des communautés caractéristiques. Le ratio des taxons sensibles aux perturbations par rapport aux taxons insensibles indique une légère détérioration par rapport aux niveaux non perturbés. Le niveau de diversité des taxons d'invertébrés indique de légères détériorations par rapport aux niveaux non perturbés.	La composition et l'abondance des taxons d'invertébrés diffèrent modérément de celles des communautés caractéristiques. D'importants groupes taxinomiques de la communauté caractéristique font défaut. Le ratio des taxons sensibles aux perturbations par rapport aux taxons insensibles et le niveau de diversité sont sensiblement inférieurs aux niveaux caractéristiques et nettement inférieurs aux aux niveaux du bon état.
ICHTYOFAUNE	La composition et l'abondance des espèces correspondent totalement ou presque totalement aux conditions non perturbées. Toutes les espèces caractéristiques sensibles aux perturbations sont présentes. Les structures d'âge des communautés n'indiquent guère de perturbation anthropogénique et ne révèlent pas de troubles dans la reproduction ou dans le développement d'une espèce particulière.	Légères modifications dans la composition et l'abondance des espèces par rapport aux communautés caractéristiques, en raison d'effets anthropogéniques sur les éléments de qualité physico-chimique et hydromorphologique. Les structures d'âge des communautés indiquent des signes de perturbation due aux effets anthropogéniques sur les éléments de qualité physico-chimique et hydromorphologique et, dans certains cas, révèlent des troubles dans la reproduction ou dans le développement d'une espèce particulière, en ce sens que certaines classes d'âge peuvent faire défaut.	La composition et l'abondance des espèces diffèrent modérément de celles des communautés caractéristiques, en raison d'effets anthropogéniques sur les éléments de qualité physico-chimique ou hydromorphologique. Les structures d'âge des communautés indiquent des signes importants de perturbation anthropogénique, en ce sens qu'une proportion modérée de l'espèce caractéristique est absente ou très peu abondante.

2.2.2. Éléments de qualité hydromorphologique pour les plans d'eau

Tableau 7 : définition des classes d'état des plans d'eau pour les éléments de qualité hydromorphologique

ÉLÉMENT	TRÉS BON ÉTAT	BON ÉTAT	ÉTAT MOYEN
REGIME HYDROLOGIQUE	La quantité et la dynamique du débit, le niveau, le temps de résidence et la connexion résultante aux eaux souterraines, correspondent totalement ou presque totalement aux conditions non perturbées.	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.
CONDITIONS MORPHOLOGIQUES	Les variations de profondeur du lac, la quantité et la structure du substrat ainsi que la structure et l'état des rives correspondent totalement ou presque totalement aux conditions non perturbées.	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.

2.2.3. Éléments de qualité physico-chimique pour les plans d'eau

Tableau 8 : définition des classes d'état des plans d'eau pour les éléments de qualité physico-chimique

ÉLÉMENT	TRÉS BON ÉTAT	BON ÉTAT	ÉTAT MOYEN
CONDITIONS GENERALES	Les valeurs des éléments physico-chimiques correspondent totalement ou presque totalement aux conditions non perturbées. Les concentrations de nutriments restent dans la fourchette normalement associée aux conditions non perturbées. Les niveaux de salinité, le pH, le bilan d'oxygène, la capacité de neutralisation des acides, la transparence et la température n'indiquent pas de signes de perturbation anthropogénique et restent dans la fourchette normalement associée aux conditions non perturbées.	La température, le bilan d'oxygène, le pH, la capacité de neutralisation des acides, la transparence et la salinité ne dépassent pas les niveaux établis pour assurer le fonctionnement de l'écosystème caractéristique et pour atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique. Les concentrations de nutriments ne dépassent pas les niveaux établis pour assurer le fonctionnement de l'écosystème caractéristique et pour atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.

ÉLÉMENT	TRÉS BON ÉTAT	BON ÉTAT	ÉTAT MOYEN
POLLUANTS SYNTHETIQUES SPECIFIQUES		Concentrations ne dépassant pas les normes de qualité environnementale définies dans le présent arrêté	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.
POLLUANTS NON SYNTHETIQUES SPECIFIQUES		Concentrations ne dépassant pas les normes de qualité environnementale définies dans le présent arrêté	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.

2.3. <u>Définitions du très bon état écologique, du bon état écologique et de l'état écologique moyen en ce qui concerne les eaux de transition</u>

2.3.1. Éléments de qualité biologique pour les eaux de transition

Tableau 9 : définitions des classes d'état des eaux de transition pour les éléments de qualité biologique

ÉLÉMENT	TRÉS BON ÉTAT	BON ÉTAT	ÉTAT MOYEN
PHYTOPLANCTON	La composition et l'abondance des taxons phytoplanctoniques correspondent totalement ou presque totalement aux conditions non perturbées. La biomasse moyenne du phytoplancton correspond aux conditions physico-chimiques caractéristiques et n'est pas de nature à détériorer sensiblement les conditions de transparence caractéristiques. Les efflorescences planctoniques sont d'une fréquence et d'une intensité qui correspondent aux conditions physico-chimiques caractéristiques.	Légères modifications dans la composition et l'abondance des taxons planctoniques. Légères modifications dans la biomasse par rapport aux conditions caractéristiques. Ces modifications n'indiquent pas de croissance accélérée des algues entraînant des perturbations indésirables de l'équilibre des organismes présents dans la masse d'eau ou de la qualité physico-chimique de l'eau. La fréquence et l'intensité des efflorescences planctoniques peuvent augmenter légèrement.	La composition et l'abondance des taxons planctoniques diffèrent modérément des communautés caractéristiques. La biomasse est modérément perturbée et peut être de nature à produire une forte perturbation indésirable des valeurs des autres éléments de qualité biologique. La fréquence et l'intensité des efflorescences planctoniques peuvent augmenter modérément. Des efflorescences peuvent persister durant les mois d'été.

ÉLÉMENT	TRÉS BON ÉTAT	BON ÉTAT	ÉTAT MOYEN
ALGUES MACROSCOPIQUES	La composition des taxons de macro-algues correspond aux conditions non perturbées. Pas de modifications détectables de la couverture de macro-algues par suite d'activité anthropogénique.	Légères modifications dans la composition et l'abondance des taxons macro-algues par rapport aux communautés caractéristiques. Ces changements n'indiquent pas de croissance accélérée du phytobenthos ou de formes supérieures de vie végétale entraînant des perturbations indésirables de l'équilibre des organismes présents dans la masse d'eau ou de la qualité physico-chimique de l'eau.	La composition des taxons de macro-algues diffère modérément des conditions caractéristiques et est sensiblement plus perturbée que dans le bon état. Des modifications modérées de l'abondance moyenne des macro-algues sont perceptibles et peuvent être de nature à entraîner une perturbation indésirable de l'équilibre des organismes présents dans la masse d'eau.
ANGIOSPERMES	La composition taxinomique correspond totalement ou presque totalement aux conditions non perturbées. Pas de modifications détectables dans l'abondance des angiospermes par suite d'activité anthropogénique.	Légères modifications dans la composition des taxons d'angiospermes par rapport aux communautés caractéristiques. L'abondance des angiospermes montre de légers signes de perturbation.	La composition des taxons d'angiospermes différents modérément de celles des communautés caractéristiques et est sensiblement plus perturbée que dans le bon état. Ecarts modérés dans l'abondance des taxons d'angiospermes.
FAUNE BENTHIQUE INVERTEBREE	Le niveau de diversité et d'abondance des taxons d'invertébrés se situe dans la fourchette normalement associée aux conditions non perturbées. Tous les taxons sensibles aux perturbations associés à des conditions non perturbées sont présents	Le niveau de diversité et d'abondance des taxons d'invertébrés se situe légèrement en dehors de la fourchette normalement associée aux conditions non perturbées. La plupart des taxons sensibles des communautés caractéristiques sont présents.	Le niveau de diversité et d'abondance des taxons d'invertébrés se situe modérément en dehors de la fourchette normalement associée aux conditions non perturbées. Des taxons indicatifs de pollution sont présents. Bon nombre des taxons sensibles des communautés caractéristiques sont absents.
ICHTYOFAUNE	La composition et l'abondance des espèces correspondent aux conditions non perturbées.	L'abondance des espèces sensibles aux perturbations montre de légers écarts par rapport aux conditions caractéristiques, dus aux influences anthropogéniques sur les éléments de qualité physico-chimique ou hydromorphologique.	Une proportion modérée des espèces caractéristiques sensibles aux perturbations est absente suite aux influences anthropogéniques sur les éléments de qualité physico-chimiques ou hydromorphologiques.

2.3.2. Éléments de qualité hydromorphologique pour les eaux de transition

Tableau 10 : définitions des classes d'état des eaux de transition pour les éléments de qualité hydromorphologique

ÉLÉMENT	GIME HYDROLOGIQUE Le débit d'eau douce correspond Conditions permettant d'atteindre les Conditions permettant d'atte		ÉTAT MOYEN		
REGIME HYDROLOGIQUE			Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.		
CONDITIONS MORPHOLOGIQUES	Les variations de profondeur, l'état du substrat ainsi que la structure et l'état des zones intertidales correspondent totalement ou presque totalement aux conditions non perturbées.	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.		

2.3.3. Éléments de qualité physico-chimique pour les eaux de transition

Tableau 11 : définitions des classes d'état des eaux de transition pour les éléments de qualité physico-chimique

ÉLÉMENT	TRÉS BON ÉTAT	BON ÉTAT	ÉTAT MOYEN
CONDITIONS GENERALES	Les éléments physico-chimiques correspondent totalement ou presque totalement aux conditions non perturbées. Les concentrations de nutriments restent dans la fourchette normalement associée aux conditions non perturbées. La température, le bilan d'oxygène et la transparence n'indiquent pas de signes de perturbation anthropogénique et restent dans la fourchette normalement associée aux conditions non perturbées.	La température, le bilan d'oxygène et la transparence ne dépassent pas les normes établies pour assurer le fonctionnement de l'écosystème et pour atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique. Les concentrations de nutriments ne dépassent pas les niveaux établis pour assurer le fonctionnement de l'écosystème et pour atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.

POLLUANTS SYNTHETIQUES SPECIFIQUES		Concentrations ne dépassant pas les normes de qualité environnementale définies dans le présent arrêté	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.	
POLLUANTS NON SYNTHETIQUES SPECIFIQUES		Concentrations ne dépassant pas les normes de qualité environnementale définies dans le présent arrêté	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.	

2.4. <u>Définitions du très bon état écologique, du bon état écologique et de l'état écologique moyen en ce qui concerne les eaux côtières</u>

2.4.1. Éléments de qualité biologique pour les eaux côtières

Tableau 12 : définitions des classes d'état des eaux de côtières pour les éléments de qualité biologique

ÉLÉMENT	TRÉS BON ÉTAT	BON ÉTAT	ÉTAT MOYEN
PHYTOPLANCTON	La composition et l'abondance des taxons phytoplanctoniques correspondent totalement ou presque totalement aux conditions non perturbées. La biomasse moyenne du phytoplancton correspond aux conditions physico-chimiques caractéristiques et n'est pas de nature à détériorer sensiblement les conditions de transparence caractéristiques. L'efflorescence planctonique est d'une fréquence et d'une intensité qui correspondent aux conditions physico-chimiques caractéristiques.	La composition et l'abondance des taxons phytoplanctoniques montrent de légers signes de perturbation. Légères modifications dans la biomasse par rapport aux conditions caractéristiques. Ces changements n'indiquent pas de croissance accélérée des algues entraînant des perturbations indésirables de l'équilibre des organismes présents dans la masse d'eau ou de la qualité de l'eau. La fréquence et l'intensité de l'efflorescence planctonique peuvent augmenter légèrement.	La composition et l'abondance des taxons planctoniques diffèrent modérément de celles des communautés caractéristiques. La biomasse des algues dépasse sensiblement la fourchette associée aux conditions caractéristiques et est de nature à se répercuter sur d'autres éléments de qualité biologique. La fréquence et l'intensité de l'efflorescence planctonique peuvent augmenter modérément. Une efflorescence persistante peut se produire durant les mois d'été.

ALGUES MACROSCOPIQUES ET ANGIOSPERMES	Tous les taxons d'algues macroscopiques et d'angiospermes sensibles aux perturbations et associés aux conditions non perturbées sont présents. Les niveaux de couverture d'algues macroscopiques et l'abondance d'angiospermes correspondent aux conditions non perturbées.	La plupart des taxons d'algues macroscopiques et d'angiospermes sensibles aux perturbations et associés aux conditions non perturbées sont présents. Le niveau de couverture d'algues macroscopiques et l'abondance d'angiospermes montrent de légers signes de perturbation.	Un nombre modéré de taxons d'algues macroscopiques et d'angiospermes sensibles aux perturbations et associés aux conditions non perturbées sont absents. La couverture d'algues macroscopiques et l'abondance d'angiospermes sont modérément perturbées et peuvent être de nature à entraîner une perturbation indésirable de l'équilibre des organismes présents dans la masse d'eau.
FAUNE BENTHIQUE INVERTEBREE	La composition et l'abondance taxinomiques correspondent totalement ou presque totalement aux conditions non perturbées. Le ratio des taxons sensibles aux perturbations par rapport aux taxons insensibles n'indique aucune détérioration par rapport aux niveaux non perturbés. Le niveau de diversité des taxons d'invertébrés n'indique aucune détérioration par rapport aux niveaux non perturbés.	Légères modifications dans la composition et l'abondance des taxons d'invertébrés par rapport aux communautés caractéristiques. Le ratio des taxons sensibles aux perturbations par rapport aux taxons insensibles indique une légère détérioration par rapport aux niveaux non perturbés. Le niveau de diversité des taxons d'invertébrés indique de légères détériorations par rapport aux niveaux non perturbés.	La composition et l'abondance des taxons d'invertébrés diffèrent modérément de celles des communautés caractéristiques D'importants groupes taxinomiques des communautés caractéristiques font défaut. Le ratio des taxons sensibles aux perturbations par rapport aux taxons d'insensibles et le niveau de diversité des taxons invertébrés sont sensiblement inférieurs au niveau caractéristique et nettement inférieurs à ceux du bon état.

2.4.2. Éléments de qualité hydromorphologique pour les eaux côtières

Tableau 13 : définitions des classes d'état des eaux de côtières pour les éléments de qualité hydromorphologique

ÉLÉMENT	TRÉS BON ÉTAT	BON ÉTAT	ÉTAT MOYEN	
REGIME DES MAREES	Le débit d'eau douce ainsi que la direction et la vitesse des courants dominants correspondent totalement ou presque totalement aux conditions non perturbées.		Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.	
MORPHOLOGIQUES	Les variations de profondeur, la structure et le substrat du lit côtier ainsi que la structure et l'état des zones intertidales correspondent totalement ou presque totalement aux conditions non perturbées.	indiquées ci-dessus pour les éléments de qualité biologique.	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.	

2.4.3. Éléments de qualité physico-chimique pour les eaux côtières

Tableau 14 : définitions des classes d'état des eaux de côtières pour les éléments de qualité physico-chimique

ÉLÉMENT	TRES BON ETAT	BON ETAT	ÉTAT MOYEN
CONDITIONS GENERALES	perturbées. Les concentrations de nutriments restent dans la fourchette normalement associée aux conditions non perturbées. La température, le bilan d'oxygène et la transparence n'indiquent pas de signes de perturbation	fonctionnement de l'écosystème et pour atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique. Les concentrations de nutriments ne dépassent pas les niveaux établis pour assurer le fonctionnement de l'écosystème et pour atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.

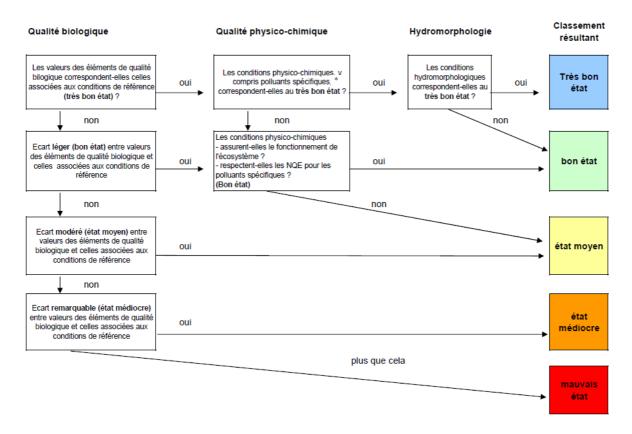
POLLUANTS SYNTHETIQUES SPECIFIQUES	1	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.
POLLUANTS NON SYNTHETIQUES SPECIFIQUES	*	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.

2.5. <u>Définitions des classes d'état du potentiel écologique pour les masses d'eau fortement modifiées ou artificielles</u>

Tableau 15 : définitions des potentiels écologiques maximal, bon et moyen en ce qui concerne les masses d'eau fortement modifiées (MEFM) ou artificielles (MEA)

ÉLÉMENT	ÉLÉMENT POTENTIEL ÉCOLOGIQUE MAXIMAL		POTENTIEL ÉCOLOGIQUE MOYEN	
ÉLÉMENTS DE QUALITE BIOLOGIQUE	Les valeurs des éléments de qualité biologique pertinents reflètent, autant que possible, celles associées au type de masse d'eau de surface naturelle le plus comparable, vu les conditions physiques qui résultent des caractéristiques artificielles ou fortement modifiées de la masse d'eau.	Légères modifications dans les valeurs des éléments de qualité biologique pertinents par rapport aux valeurs trouvées pour un potentiel écologique maximal.	Modifications modérées dans les valeurs des éléments de qualité biologique pertinents par rapport aux valeurs trouvées pour un potentiel écologique maximal. Ces valeurs accusent des écarts plus importants que dans le cas d'un bon potentiel écologique.	
ÉLÉMENTS DE QUALITE HYDROMORPHOLOGIQUE	Les conditions hydromorphologiques correspondent aux conditions normales, les seuls effets sur la masse d'eau de surface étant ceux qui résultent des caractéristiques artificielles ou fortement modifiées de la masse d'eau dès que toutes les mesures pratiques d'atténuation ont été prises afin d'assurer qu'elles autorisent le meilleur rapprochement possible d'un continuum écologique, en particulier en ce qui concerne la migration de la faune, le frai et les lieux de reproduction.	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.	

ÉLÉMENTS DE QUALITE PHYSICO-CHIMIQUE			
CONDITIONS GENERALES	Les éléments physico-chimiques correspondent totalement ou presque totalement aux conditions non perturbées associées au type de masse d'eau de surface le plus comparable à la masse artificielle ou fortement modifiée concernée. Les concentrations de nutriments restent dans la fourchette normalement associée aux conditions non perturbées. La température, le bilan d'oxygène et le pH correspondent à ceux des types de masse d'eau de surface les plus comparables dans des conditions non perturbées.	Les valeurs des éléments physico-chimiques ne dépassent pas les valeurs établies pour assurer le fonctionnement de l'écosystème et pour atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique. La température et le pH ne dépassent pas les valeurs établies pour assurer le fonctionnement de l'écosystème et pour atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique. Les concentrations de nutriments ne dépassent pas les niveaux établis pour assurer le fonctionnement de l'écosystème et pour atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.
POLLUANTS SYNTHETIQUES SPECIFIQUES		Concentrations ne dépassant pas les normes de qualité environnementale définies dans le présent arrêté	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.
POLLUANTS NON SYNTHETIQUES CARACTERISTIQUES		Concentrations ne dépassant pas les normes de qualité environnementale définies dans le présent arrêté	Conditions permettant d'atteindre les valeurs indiquées ci-dessus pour les éléments de qualité biologique.


ANNEXE 2

RÈGLES D'AGRÉGATION ENTRE PARAMÈTRES ET ÉLÉMENTS DE QUALITÉ DE L'ÉTAT ÉCOLOGIQUE POUR LES EAUX DE SURFACE

1. Agrégation des éléments de qualité dans la classification de l'état écologique

La règle d'agrégation des éléments de qualité pertinents pour le type de masse d'eau considéré, dans la classification de l'état écologique, est celle du principe de l'élément de qualité déclassant. Le schéma suivant¹ indique les rôles respectifs des éléments de qualité biologique, physicochimiques et hydromorphologiques dans la classification de l'état écologique.

Figure 1 : arbre d'évaluation de l'état écologique des eaux

- * L'état physico-chimique est très bon si :
- les paramètres physico-chimiques respectent le très bon état ;
- la concentration des polluants spécifiques est inférieure aux limites de quantification indiquées dans l'avis relatif aux limites de quantification des couples « paramètre-matrice » de l'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques.

¹ L'arbre d'évaluation est inspiré du document guide européen « Approche générale de la classification de l'état écologique et du potentiel écologique », ECOSTAT, novembre 2003.

2. Agrégation des paramètres pour évaluer l'état des éléments de qualité

Les règles d'agrégation des paramètres à appliquer pour évaluer l'état des éléments de qualité sont les suivantes :

2.1. Au sein des éléments de qualité biologique

Lorsque les indices biologiques permettent l'attribution d'une classe d'état, le principe du paramètre déclassant est appliqué pour l'attribution d'une classe d'état au niveau de l'élément de qualité. En d'autres termes, l'état d'un élément de qualité correspond à la plus basse des valeurs de l'état des paramètres constitutifs de cet élément de qualité.

En l'absence de données pour les éléments de qualité biologique, aucune agrégation ne sera réalisée. La qualité biologique sera inconnue.

2.2. Au sein des éléments physico-chimiques généraux

Lorsque plusieurs paramètres interviennent pour le même élément de qualité physico-chimique général (cf. liste au tableau 38), on applique pour l'évaluation de cet élément le principe du paramètre déclassant (l'état d'un élément de qualité correspond à la plus basse des valeurs de l'état des paramètres constitutifs de cet élément de qualité).

Toutefois, pour réduire les erreurs de classement lorsque les valeurs sont proches du seuil entre les états « bon » et « moyen », un élément de qualité physico-chimique général constitué de plusieurs paramètres (bilan en oxygène et nutriments) pourra être classé en état « bon » lorsque les deux conditions suivantes sont réunies :

- tous les éléments de qualité biologique et les autres éléments de qualité physicochimique généraux sont classés dans un état « bon » ou « très bon » ;
- un seul paramètre constitutif de cet élément de qualité est classé dans un état « moyen ».

Dans ce cas, le paramètre physico-chimique déclassant est classé en état « moyen » et l'élément de qualité correspondant est classé en état « bon ».

Pour les cours d'eau, cette disposition ne s'applique pas au paramètre relatif aux nitrates pour le classement en « bon » état. Ainsi, en d'autres termes, une masse d'eau dont le paramètre relatif aux nitrates est classé en état moins que « bon » (concentration supérieure à 50 mg/l) est classée en état écologique moins que « bon ».

Les deux paramètres oxygène dissous et taux de saturation en 0₂ dissous sont intimement liés et dépendants. De ce fait, ils doivent être considérés comme un seul paramètre pour appliquer les modalités d'agrégations décrites ci-dessus pour évaluer l'état de l'élément qualité relatif au bilan en oxygène.

En l'absence de données physico-chimiques, l'état écologique est égal à l'agrégation des éléments de qualité biologique.

2.3. Au sein des polluants spécifiques de l'état écologique

Le principe du paramètre déclassant est appliqué pour l'attribution d'une classe d'état au niveau des polluants spécifiques de l'état écologique. En d'autres termes, une classe d'état est respectée pour les polluants spécifiques de l'état écologique lorsque l'ensemble des polluants spécifiques de l'état écologique est classé au moins dans cette classe d'état ou en état inconnu. La classe d'état « inconnu » est associée aux polluants spécifiques lorsque l'ensemble des polluants spécifiques est en état inconnu.

ANNEXE 3

MODALITÉS D'ÉVALUATION DE L'ÉTAT DES ÉLÉMENTS DE QUALITÉ DE L'ÉTAT ÉCOLOGIQUE POUR LES EAUX DOUCES DE SURFACE

Modalités d'évaluation de l'état des eaux douces de surface : les indices biologiques, les paramètres physico-chimiques, les valeurs de référence et les EQR des seuils de classes d'état et modalités de calcul des éléments de qualité de l'état écologique, pour lesquels des méthodes sont disponibles actuellement, sont indiqués pour les cours d'eau dans la partie 1 de la présente annexe et pour les plans d'eau dans la partie 2 de la présente annexe.

Les indices sont utilisables conformément aux conditions et limites d'application technique intrinsèques de chacun(e) des méthodes ou protocoles, décrit(e)s dans les normes et documents techniques de référence listés dans l'arrêté du 25 janvier 2010 modifié établissant le programme de surveillance de l'état des eaux.

1. <u>Indices, valeurs de référence, EQR des seuils de classes d'état et modalités de calcul de l'état des éléments de qualité de l'état écologique des cours d'eau</u>

L'ensemble des indices utilisables seront calculés à l'aide du système d'évaluation de l'état des eaux présenté au point 3 de l'annexe 9 dès mise à disposition sur l'outil ou d'un système équivalent utilisant les mêmes algorithmes. Les résultats fournis ne devront pas être arrondis.

1.1. Éléments biologiques pour les cours d'eau

Les indices, les valeurs de référence, les EQR des seuils de classes d'état et modalités de calcul de l'état des éléments de qualité biologique des cours d'eau sont les suivants :

1.1.1. Invertébrés

1.1.1.1. Indice biologique invertébrés pour la métropole

L'indice biologique invertébrés à utiliser est l'indice invertébrés multimétrique (I_2M_2 – code Sandre 7613) décrit dans : Usseglio-Polatera P., Mondy C.P., Larras F. & Coulaud R. 2018. Bioévaluation des cours d'eau peu profonds basée sur le compartiment des macroinvertébrés benthiques : I_2M_2 et outil diagnostique. Livret-guide. Université de Lorraine (LIEC).

Pour l'HER 9A, il est possible d'utiliser temporairement pour le prochain cycle en lieu et place de l'I₂M₂ l'indice dit « équivalent » (phases A+B) de la méthode macro-invertébrés NF T90-333. Cet indice est calculé au moyen des règles de calcul de la méthode IBGN (NF T90-350 – mars 2004) sur les phases A et B de la norme NF T90-333 de septembre 2016 (code Sandre 5910).

Pour les cours d'eau profond, l'indice biologique invertébrés à utiliser est l'indice macro-invertébrés grands cours d'eau (MGCE 12 prélèvements – code Sandre 6951). Cet indice est calculé au moyen des règles de calcul de la méthode IBGN (NF T90-350 – mars 2004) sur l'ensemble des phases comprenant les 12 prélèvements élémentaires du protocole expérimental

d'échantillonnage des macro-invertébrés en cours d'eau profond de P. Usseglio Polatera, J.G. Wasson et V. Archaimbault, déc. 2009 ou protocole ultérieur ou norme actualisant ce dernier.

Les tableaux ci-dessous indiquent les valeurs inférieures des limites de classes, exprimées en EQR, pour l'indice invertébrés multi-métrique et l'indice biologique global normalisé, par type de cours d'eau, sous la forme suivante : a-b-c-d (a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l'état moyen, d = limite inférieure de l'état médiocre).

La classification s'établit en calculant la moyenne des indices obtenus sur chacune des années à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté; puis, en comparant cette moyenne aux limites de classe indiquées dans le tableau ci-dessous.

La note en EQR est calculée à l'aide du système d'évaluation de l'état des eaux ou d'un outil conforme à celui-ci.

Tableau 16 : valeurs inférieures des limites des classes d'état, exprimées en EQR, par type* de cours d'eau pour $l'I_2M_2$

	urs inférieures		Catégorie	es de taille	de cours d'e	eau	
pai	mites de classe r type* pour EQR I ₂ M ₂	Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2	Très Grands	Grands	Moyens	Petits	Très Petits
Hydroe	corégions de niveau 1	Cas général			0,665-0,443-0	0.295-0.148	
20	DEPOTS ARGILO	Exogène de l'HER 9		0.665-0.443	3-0,295-0,148		
	SABLEUX	Exogène de l'HER 21					
21	MASSIF CENTRAL	Cas général		0,665-0,498- 0,332-0,166	0,665-0,443- 0,295-0,148	0,665-0,443-0	295-0 148
	NORD	Cas général		0,665-0,498-	0.66	5-0,443-0,295-0,1	
		Exogène de l'HER 19		0,332-0,166		3 0,443 0,233 0,1	10
3	MASSIF CENTRAL SUD	Exogene de l'HER 8			0,665-0,498- 0,332-0,166		
		Exogène de l'HER 19 ou		0,665-0,498-	_		
		8		0,332-0,166	"	0,665-0,498-	0,665-0,443-
17	DEPRESSIONS SEDIMENTAIRES	Cas général Exogène de l'HER 3 ou		0,665-0,443-	#	0,332-0,166 0,665-0,443-	0,295-0,148
		21 Exogène de l'HER 3 ou	#	0,295-0,148	0,665-0,443- 0,295-0,148	0,295-0,148	
		21					
15	PLAINE SAONE	Exogène de l'HER 5		#	0,665-0,443	3-0,295-0,148	
		Cas général	#		0,66	5-0,443-0,295-0,1 T	48 T
		Exogène de l'HER 4	#	0.665.0.400			
5	JURA / PRE-ALPES	Cas général		0,665-0,498- 0,332-0,166	0,60	5-0,354-0,236-0,1	18
	DU NORD	Exogène de l'HER 2	#	0,665-0,46	5-0,306-0,153		
TTGA	FLEUVES ALPINS	Cas général	#				
2	ALPES INTERNES	Cas général			0,665-0,46-0	,306-0,153	
7	PRE-ALPES DU SUD	Cas général			0,676-0,464-	0,31-0,155	
,	I RE-ALI ES DO SOD	Exogène de l'HER 2	#	0,665-0,46	5-0,306-0,153		
		Exogène de l'HER 2 ou 7	#	0,665-0,498- 0,332-0,166			
		Exogène de l'HER 7		0,665-0,49	8-0,332-0,166		
6	MEDITERRANEE	Exogène de l'HER 8		0.667.0.40	0.0000.0466		
		Exogène de l'HER 1	#	0,665-0,49	8-0,332-0,166		
		Cas général		0,665-0,498- 0,332-0,166	0,67	6-0,464-0,31-0,15	55
		Cas général			8-0,332-0,166	0,676-0,464-	0,31-0,155
8	CEVENNES	A-her2 n°70		0,676-0,464-0,31-0,155		55	
		A-her2 n°22		0,665-0,498- 0,676-0,464-0,31-0,155		55	
16	CORSE	B-her2 n°88		0,332-0,332- 0,166	0,676-0,464- 0,31-0,155	#	#
		Cas général			0,51-0,155	0,665-0,498- 0,332-0,166	
19	GRANDS CAUSSES	Exogène de l'HER 8		0,665-0,49	8-0,332-0,166	0,332-0,100	
11	CAUSSES	Cas général				0,665-0,498-0	0,332-0,166
	AQUITAINS	_				l	

		Exogène de l'HER 3 et/ou 21	#	0,665-0,498- 0,332-0,166	0,665-0,443	-0,295-0,148		
		Exogène des HER 3, 8, 11 ou 19	#	0,665-0,498-	0,665-0,443- 0,295-0,148			
14	COTEAUX	Exogène de l'HER 3 ou 8		0,332-0,166				
14	AQUITAINS	Cas général		0,665-0,443-0,295-0,148		0,665-0,498-0,	332-0,166	
		Exogène de l'HER 1	#	0,665-0,498	-0,332-0,166	0,665-0,46- 0,306-0,153		
13	LANDES	Cas général			0,665	5-0,443-0,295-0,14	18	
1	PYRENEES	Cas général			0,665-0,46-0	,306-0,153		
12	ARMORICAIN	A-Centre-Sud		0,665-0,443-	0.665	0.442.0.205.0.14	0	
12	ARMORICAIN	B-Ouest-Nord Est		0,295-0,148	0,295-0,148		5-0,443-0,295-0,148	
TTGL	LA LOIRE	Cas général	#					
		A-her2 n°57			0,665-0,443-0,295-0,148			
9	TABLES	Cas général	#	0,665-0,443-0,295-0,148				
9	CALCAIRES	Exogène de l'HER 10						
		Exogène de l'HER 21	#	0,665-0,443	-0,295-0,148			
		Exogène de l'HER 21						
10	COTES CALCAIRES EST	Cas général	#	0,665-0,443	-0,295-0,148	0,665-0,498-0,	332-0,166	
		Exogène de l'HER 4	#	0,665-0,498-	0,665-0,443- 0,295-0,148			
4	VOSGES	Cas général		0,332-0,166	0,665	5-0,443-0,295-0,14	18	
22	ADDENNIEG	Exogène de l'HER 10						
22	ARDENNES	Cas général		0,665-0,498	-0,332-0,166	0,665-0,443-0,	295-0,148	
10	ALGACE	Cas général			0,665	5-0,443-0,295-0,14	18	
18	ALSACE	Exogène de l'HER 4		0,6	65-0,443-0,295-0	,148		

^{*} Lorsque plusieurs types d'une même HER sont concernés par une valeur de référence et des valeurs seuils de limites de classes identiques,

: absence de référence. En grisé : type inexistant

alors ces types sont regroupés, par soucis de simplification, au sein d'une même cellule dans le présent tableau.

a-b-c-d : a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l'état moyen, d = limite inférieure de l'état médiocre

Tableau 17 : valeurs inférieures des limites des classes d'état, exprimées en EQR, par type* de cours d'eau pour l'EQR-équivalent phase (A+B) de l'HER 9 A-her2 n°57 et l'indice MGCE 12 prélèvements des cours d'eau profonds

Val	eurs inférieures des	Cate	égories d	e taille de	e cours d'ea	u	
limites de classe par type* pour l'EQR-équivalent phase (A+B) de l'HER 9 A-her2 n°57 et de l'indice MGCE 12 prélèvements des cours d'eau profonds		Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2	Très Grands	Grands	Moyens	Petits	Très Petits
- 11	ydroécorégions de niveau 1	0 ()			0.02222.0.00000	0.50000 0.0000	
		Cas général		0.92857-0	0,93333-0,80000 78571-0,57142-	-0,53333-0,33333	
20	DEPOTS ARGILO SABLEUX	Exogène de l'HER 9			28571		
		Exogène de l'HER 21			0,94444-		
21	MASSIF CENTRAL NORD	Cas général		#	0,77777- 0,55555-0,27777	0,94444-0,7777 0,277	
		Cas général		#		,77777-0,55555-0	
		Exogène de l'HER 19			0,94117- 0,82352- 0,52940-0,29411		
3	MASSIF CENTRAL SUD	Exogène de l'HER 8			0,94444- 0,77777- 0,55555-0,27777		
		Exogène de l'HER 19 ou 8		0,94117- 0,82352 0,52940- 0,29411			
	DEPRESSIONS	Cas général			0,93333-0,	80000-0,53333-0	
17	SEDIMENTAIRES	Exogène de l'HER 3 ou 21	#	#	0,94444- 0,77777-	0,94444-0,7777 0,277	
		Exogène de l'HER 3 ou 21			0,55555-0,27777		
15	PLAINE SAONE	Exogène de l'HER 5		#	0,92857- 0,78571- 0,57142-0,28571		
		Cas général	#		0,92857-0,	78571-0,57142-0	,28571
		Exogène de l'HER 4	#				
5	JURA / PRE-ALPES DU NORD	Cas général		0.02857.0	0,92857-0, 71428-0,50000-	,78571-0,57142-0	,28571
3	JORAT TRE TIEFES DE NORD	Exogène de l'HER 2	#		,28571		
TTGA	FLEUVES ALPINS	Cas général	#				
2	ALPES INTERNES	Cas général			0,92857-0,71428-	-0,50000- 0,28571	
7	PRE-ALPES DU SUD	Cas général		1.00000.0		-0,57142-0,28571	
,	FRE-ALFES DU SUD	Exogène de l'HER 2			76923-0,53846- ,30769		
		Exogène de l'HER 2 ou 7	#	1,00000- 0,80000- 0,53333- 0,33333			
	MEDITEDDANIE	Exogène de l'HER 7			80000-0,53333-		
6	MEDITERRANEE	Exogène de l'HER 8	#	0,93333-0, 0,	80000-0,53333- ,33333		
		Exogène de l'HER 1	"		81250-0,56250- ,31250		
	Cas général				-0,56250-0,31250		
8	CEVENNES	Cas général			0,93333-0,80000	-0,53333-0,33333	
О	CE VENTIES	A-her2 n°70			0,92857-0,	78571-0,57142-0	,28571
16	CORSE	A-her2 n°22			76923-0,46153-	0,91666-0,7500	
		B-her2 n°88		0.	,23076	0,2500	JU
19	GRANDS CAUSSES	Cas général				0,92857- 0,78571- 0,57142-0,28571	
		Exogène de l'HER 8			82352-0,52940- ,29411		

11	CALICCES ACHITAINS	Cas général				0,93333-0,8000 0,3333	
11	CAUSSES AQUITAINS	Exogène de l'HER 3 et/ou 21	#		0,94117-0,82352-0,52940- 0,29411		
		Exogène des HER 3, 8, 11 ou 19	#	0,94117-0,	82352-0,52940-		
		Exogène de l'HER 3 ou 8		0.	,29411		
14	COTEAUX AQUITAINS	Cas général			0,93333-0,80000	-0,53333-0,33333	
		Exogène de l'HER 1	#	#	0,93750- 0,81250- 0,56250-0,31250		
13	LANDES	Cas général			0,93333-0,	80000-0,53333-0	33333
1	PYRENEES	Cas général		#	0,93750-0,	81250-0,56250-0	31250
12	ARMORICAIN	A-Centre-Sud		#	0,93333-0,	,80000-0,53333-0	33333
12	ARMORICAIN	B-Ouest-Nord Est		#	0,93750-0,	81250-0,56250-0	31250
TTGL	LA LOIRE	Cas général	#				
		A-her2 n°57			0,92857- 0,78571- 0,57142-0,28571		
9	TABLES CALCAIRES	Cas général	#		78571-0,57142- ,28571	0,93750-0,8125 0,3125	
		Exogène de l'HER 10			81250-0,56250- ,31250		
		Exogène de l'HER 21	#		0,94444-		
		Exogène de l'HER 21		#	0,77777- 0,55555-0,27777		
10	COTES CALCAIRES EST	Cas général			81250-0,56250- ,31250	0,93333-0,8000 0,3333	
		Exogène de l'HER 4	#	#	0,93333- 0,80000- 0,53333-0,33333		
4	VOSGES	Cas général			0,93333-0,	,80000-0,53333-0	33333
22	ARDENNES	Exogène de l'HER 10	#				
22	ANDENNES	Cas général			0,94444-0,77777	-0,55555-0,27777	
		Cas général			0,93333-0,	,80000-0,53333-0	33333
18	ALSACE	Exogène de l'HER 4		#	0,93333- 0,80000- 0,53333-0,33333		

^{*} Lorsque plusieurs types d'une même HER sont concernés par une valeur de référence et des valeurs seuils de limites de classes identiques, alors ces types sont regroupés, par soucis de simplification, au sein d'une même cellule dans le présent tableau.

: absence de référence. En grisé : type inexistant

a-b-c-d : a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l'état moyen, d = limite inférieure de l'état médiocre.

Les valeurs des indices de ce tableau ont pris en compte la décision de la commission du 12 février 2018.

Tableau 18: valeurs de références, par type de cours d'eau, pour l'indice équivalent phase (A+B) de l'HER 9 Aher2 n°57 et l'indice MGCE 12 prélèvements des cours d'eau profonds

	ur de référence par type*	Catégor	ies de t	aille de c	ours d'e	au	
(A+B) l'indic	l'indice équivalent phase de l'HER 9 A-her2 n°57 et ce MGCE 12 prélèvements es cours d'eau profonds Hydroécorégions de niveau 1	Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2	Très Grands	Grands	Moyens	Petits	Très Petits
		Cas général			1	6	ı
20	DEPOTS ARGILO SABLEUX	Exogène de l'HER 9		1	5		
		Exogène de l'HER 21		1	3		
21	MASSIF CENTRAL NORD	Cas général		#	19		19
21	missi elimatina	Cas général		#		19	17
		Exogène de l'HER 19		π	18	17	
3	MASSIF CENTRAL SUD	Exogene de l'HER 8			19		
		Exogène de l'HER 19 ou 8		18	1)		
		Cas général		10		16	
17	DEPRESSIONS SEDIMENTAIRES	Exogène de l'HER 3 ou 21	#	#		10	19
		Exogène de l'HER 3 ou 21			19		I
		Exogène de l'HER 5		#	15	5	
15	PLAINE SAONE	Cas général	#			15	
		Exogène de l'HER 4	#				
_		Cas général		#		15	
5	JURA / PRE-ALPES DU NORD	Exogène de l'HER 2	#	1	5		
TTGA	FLEUVES ALPINS	Cas général	#				
2	ALPES INTERNES	Cas général		15			•
7	DDE ALDES DILISID	Cas général		15			
7	PRE-ALPES DU SUD	Exogène de l'HER 2	ш	14			
		Exogène de l'HER 2 ou 7	#	16			
		Exogène de l'HER 7		1	6		
6	MEDITERRANEE	Exogène de l'HER 8	#	1	6		
		Exogène de l'HER 1	"	1	7		
		Cas général			1	.7	
8	CEVENNES	Cas général			1	6	
	02.12.1.25	A-her2 n°70				15	
16	CORSE	A-her2 n°22		1	4		13
		B-her2 n°88					
19	GRANDS CAUSSES	Cas général				15	
		Exogène de l'HER 8		1	8		16
11	CAUSSES AQUITAINS	Cas général	"		10	l	16
		Exogène de l'HER 3 et/ou 21 Exogène des HER 3, 8, 11 ou 19	#		18		
		Exogène des HER 3, 8, 11 ou 19 Exogène de l'HER 3 ou 8	#	1	8		
14	COTEAUX AQUITAINS	Cas général			1	.6	
		Exogène de l'HER 1	#	#	17		
13	LANDES	Cas général	if	ır	17	16	
1	PYRENEES	Cas général		#		17	
	- INDIVIDU	A-Centre-Sud				16	
12	ARMORICAIN	B-Ouest-Nord Est		#	#		
TTGL	LA LOIRE	Cas général	#			17	
		A-her2 n°57			15	5	
	m.n	Cas général	#	1	5		17
9	TABLES CALCAIRES	Exogène de l'HER 10			7		
		Exogène de l'HER 21	#				
		Exogène de l'HER 21		#	19		
10	COTES CALCAIRES EST	Cas général	11	1	7		16
		Exogène de l'HER 4	#	#	16		

4	VOSGES	Cas général		16		
22 ARDENNES		Exogène de l'HER 10	#			
22	ARDENNES	Cas général		19		
18	AL SACE	Cas général			16	
18	ALSACE	Exogène de l'HER 4		#	16	

^{*} Lorsque plusieurs types d'une même HER sont concernés par une valeur de référence et des valeurs seuils de limites de classes identiques, alors ces types sont regroupés, par soucis de simplification, au sein d'une même cellule dans le présent tableau.
#: absence de référence.
En grisé: type inexistant.

1.1.1.2. Indice biologique invertébrés pour le département de la Réunion

L'indice biologique invertébrés à utiliser est l'indice Réunion macro-invertébrés (IRM) décrit dans le guide méthodologique pour la mise en œuvre d'indices biologiques en outre-mer – l'indice Réunion macro-invertébrés - IRM.

Le tableau 19 ci-dessous indique les valeurs inférieures des limites de classe pour l'indice Réunion macro-invertébrés, par type de cours d'eau, sous la forme suivante : a-b-c-d (a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l'état moyen, d = limite inférieure de l'état médiocre). Le tableau 20, ci-dessous indique, par type de cours d'eau, la valeur de référence.

La classification de l'état pour l'élément de qualité biologique « invertébrés » s'établit en calculant la moyenne des indices obtenus à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté ; puis, en comparant cette moyenne aux limites de classe indiquées dans le tableau 19 ci-dessous.

La note en EQR est calculée à l'aide du système d'évaluation de l'état des eaux. Le principe de calcul est le suivant :

Note en EQR = (note observée) / (note de référence du type)

Tableau 19 : valeurs inférieures des limites des classes d'état, exprimées en EQR, par type de cours d'eau pour l'IRM

Invertébrés des cours d'eau de la Réunion EQR-IRM	Catégories de taille de cours d'eau				
Hydroécorégions	Très grands	Grands	Moyen	Petits	Très petits
Cirques au vent			1 - 0,8 - 0,6 - 0,4	1 - 0,8 - 0,6 - 0,4	
Cirques sous le vent			1 - 0,8 - 0,6 - 0,4	1 - 0,8 - 0,6 - 0,4	
Versants au vent			1 - 0,8 - 0,6 - 0,4		
Versants sous le vent			#		

a-b-c-d : a =limite inférieure du très bon état, b =limite inférieure du bon état, c =limite inférieure de l'état moyen, d =limite inférieure de l'état médiocre

: Absence de références En grisé : type inexistant

Tableau 20 : valeurs de référence par type de cours d'eau pour l'IRM

Invertébrés des cours d'eau de la Réunion IRM	Catégories de taille de cours d'eau					
Hydroécorégions	Très grands	Grands	Moyen	Petits	Très petits	
Cirques au vent			40	40		
Cirques sous le vent			40	40		
Versants au vent			40			
Versants sous le vent			#			
En grisé : indicateur non applicable # : absence de référence.						

1.1.1.3. Indice biologique invertébrés pour les départements de la Guadeloupe et de la Martinique

L'indice biologique invertébrés à utiliser est l'indice biologique macro-invertébrés Antilles : IBMA (code Sandre 8040) décrit dans le guide pour la mise en œuvre d'indices biologiques en outre-mer – indice biologique macro-invertébrés Antilles - IBMA.

Le tableau 21 ci-dessous indique les valeurs inférieures des limites de classe pour l'indice biologique macro-invertébrés Antilles, par type de cours d'eau, sous la forme suivante : a-b-c-d (a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l'état moyen, d = limite inférieure de l'état médiocre).

La classification de l'état pour l'élément de qualité biologique « invertébrés » s'établit en calculant la moyenne des indices obtenus à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté ; puis, en comparant cette moyenne aux limites de classe indiquées dans le tableau 21 ci-dessous.

Tableau 21 : valeurs inférieures des limites des classes d'état, exprimées en EQR, par type de cours d'eau pour l'IBMA

Invertébrés des cours d'eau des Antilles EQR-IBMA				Catégor	ies de taille d	e cours d'eau	;
Bassin	Bassin Hydroécorégions		Très grands	Grands	Moyen	Petits	Très petits
Guadeloupe	1	Basse-Terre plaine nord-est*					
	3	Basse-Terre volcans*			0,7324 - 0,6003 - 0,4866 - 0,3537		
Martinique	1	Pitons du Nord*					
	2	Mornes du Sud**			0,7324 - 0,5000	- 0,3500 - 0,2900	

a-b-c-d : a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l'état moyen, d = limite inférieure de l'état médiocre

1.1.1.4. Indice biologique invertébrés pour le département de la Guyane

L'indice biologique invertébrés à utiliser est le score moyen des éphéméroptères de Guyane (SMEG) décrit dans le guide méthodologique pour la mise en œuvre d'indices biologiques en outre-mer – Score moyen des éphéméroptères de Guyane - SMEG.

Le tableau 22 ci-dessous indique les valeurs inférieures des limites de classe pour moyen des éphéméroptères de Guyane, par type de cours d'eau, sous la forme suivante : a-b-c-d (a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l'état moyen, d = limite inférieure de l'état médiocre). Le tableau 22, ci-dessous indique, par type de cours d'eau, la valeur de référence.

La classification de l'état pour l'élément de qualité biologique « invertébrés » s'établit en calculant la moyenne des indices obtenus à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté ; puis, en comparant cette moyenne aux limites de classe indiquées dans le tableau 22 ci-dessous.

Tableau 22 : valeurs inférieures des limites des classes, exprimées en EQR, par type de cours d'eau pour le SMEG

	vertébrés des cours d'eau de Guyane EQR-SMEG		Catégorie	s de taille de co	ours d'eau	
	Hydroécorégions	Très grands	Grands	Moyen	Petits	Très petits
1	Plaine littorale					
2	Bouclier guyanais	≥ 4,1 - 3,08 - 2,05 - 1,03	$\geq 4.1 - 3.08 - 2.05 - 1.03$	$\geq 4,1-3,08-2,05$ -1,03	\geq 4,1 - 3,08 - 2,05 - 1,03	$\geq 4.1 - 3.08 - 2.05 - 1.03$

a-b-c-d : a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l'état moyen, d = limite inférieure de l'état médiocreEn grisé : absence de référence définie pour l'HER « plaine littorale »

^{*:} les valeurs seuils des hydroécorégions « Basse-Terre plaine nord-est », « Basse-Terre volcans » et « Pitons du Nord » sont applicables à l'ensemble des masses d'eau des biotypologies G1, G2, G3, M4 et M5 telles que définies dans le guide méthodologique pour la mise en œuvre de l'indice biologique macro-invertébrés des Antilles – IBMA (version 2018)

^{** :} les valeurs des seuils des « Mornes du Sud » sont applicables à l'ensemble des masses d'eau de la biotypologie M6 telle que définie dans le guide méthodologique pour la mise en œuvre de l'indice biologique macro-invertébrés des Antilles – IBMA En grisé : type inexistant

Tableau 23 : valeurs de référence par type de cours d'eau pour le SMEG

	vertébrés des cours d'eau de Guyane SMEG		Catégories	s de taille de c	cours d'eau			
	Hydroécorégions	Très grands	Grands	Moyen	Petits	Très petits		
1	Plaine littorale							
2	Bouclier guyanais	4,63	4,63	4,63	4,63	4,63		
En grisé : absence de référence définie pour l'HER « Plaine littorale »								

1.1.2. Diatomées

1.1.2.1. Indice biologique diatomées pour la métropole

L'indice biologique diatomées à utiliser est l' IBD_{2007} (code Sandre 5856) mis en œuvre dans le respect de la norme AFNOR NF T 90 354.

Le tableau 24 ci-dessous indique les valeurs inférieures des limites de classe, en EQR, pour l'indice biologique diatomées. Le tableau 25, ci-dessous indique, par type de cours d'eau, la valeur de référence et la valeur minimale sous la forme suivante : a-b (a = valeur de référence du type, b = valeur minimale du type).

La classification de l'état pour l'élément de qualité biologique « diatomées » s'établit en calculant la moyenne des indices obtenus à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté; puis, en comparant cette moyenne aux limites de classe indiquées dans le tableau 24 ci-dessous.

La note en EQR est calculée à l'aide du système d'évaluation de l'état des eaux. Le principe de calcul est le suivant :

Note en EQR = (note observée – note minimale du type) / (note de référence du type – note minimale du type)

Tableau 24 : valeurs inférieures des limites des classes d'état, exprimées en EQR, par type de cours d'eau pour l'IBD₂₀₀₇

Valeurs inférieures des limites	Limites des classes d'état IBD en EQR						
de classe de l'IBD ₂₀₀₇	Très bon / Bon	Bon / Moyen	Moyen / Médiocre	Médiocre / Mauvais			
Tous types de cours d'eau sauf TGCE > 10 000 km² de bassin versant	0,94	0,78	0,55	0,3			
Très grands cours d'eau ≥ 10 000 km² de bassin versant (**)	0,92	0,76	0,52	0,26			
Les valeurs d'EQR de l'IBD ₂₀₀₇ figurant dans ce tableau ont pris en compte la décision de la commission du 12 février 2018 relative à l'inter-étalonnage.							

Tableau 25 : valeurs de référence et valeurs minimales, par type de cours d'eau, pour l'IBD2007

vale	ur de référence et ur minimale par ype (IBD2007)	Co	atégories de	e taille de c	ours d'	eau		
Hydr	oécorégions de niveau 1	Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2	Très Grands (**) ≥ 10 000 km²	Très Grands (*) < 10 000 km²	Grands	Moyens	Petits	Très Petits
		Cas général				18.	,1-1	
20	DEPOTS ARGILO SABLEUX	Exogène de l'HER 9			18	,1-1		
		Exogène de l'HER 21			1	9-5		
21	MASSIF CENTRAL NORD	Cas général				19	19-5	
		Cas général				19	9-5	
2	MACCHE CENTER AL CLUB	Exogène de l'HER 19				18,1-1		
3	MASSIF CENTRAL SUD	Exogène de l'HER 8				19-5		
		Exogène de l'HER 19 ou 8			18,1-1			
17	DEPRESSIONS	Cas général					17,4-1	
17	SEDIMENTAIRES	Exogène de l'HER 3 ou 21	18,1-1	18,1-1		19	9-5	
		Exogène de l'HER 3 ou 21				19-5		
	DV 4 DVE G 4 OVE	Exogène de l'HER 5			2	0-5		
15	PLAINE SAONE	Cas général	18,1-1	18,1-1			18,1-1	
		Exogène de l'HER 4	18,1-1	18,1-1				
-	JURA / PRE-ALPES DU	Cas général			20)-5	
5	NORD	Exogène de l'HER 2	19,1-1	20-5	2	0-5		
TTGA	FLEUVES ALPINS	Rhin, Rhône jusqu'à Lyon	19,1-1					
TTGA	FLEUVES ALPINS	Rhône de l'aval confluence Saône à Lyon jusqu'à l'exutoire	18,1-1					
2	ALPES INTERNES	Cas général				20)-5	
-	DDE ALDES DILISID	Cas général				20)-5	
7	PRE-ALPES DU SUD	Exogène de l'HER 2	10.1.1	20.5	2	0-5		
		Exogène de l'HER 2 ou 7	19,1-1	20-5	20-5			
		Exogène de l'HER 7			2	0-5		
6	MEDITERRANEE	Exogène de l'HER 8		10.5	1	9-5		
		Exogène de l'HER 1		19-5	2	0-5		
		Cas général			18,1-		,1-1	
0	CEVENDIES	Cas général			19-5		9-5	
8	CEVENNES	A-her2 n°70					19-5	
16	COPCE	A-her2 n°22					. 5	
16	CORSE	B-her2 n°88			19-5			
19	GRANDS CAUSSES	Cas général					18,1-1	

		Exogène de l'HER 8			1	9-5		
11	CALICGES A OLUTA INC	Cas général					18,	1-1
11	CAUSSES AQUITAINS	Exogène de l'HER 3 et/ou 21	19,1-1	19-5		19-5	•	
		Exogène des HER 3, 8, 11 ou 19	18,1-1	18,1-1	18	,1-1		
14	COTEALLY AQUITAING	Exogène de l'HER 3 ou 8			18	,1-1		
14	COTEAUX AQUITAINS	Cas général				18	,1-1	
		Exogène de l'HER 1	18,1-1	18,1-1	20-5			
13	LANDES	Cas général			18,4-5			
1	PYRENEES	Cas général			20-5			
12	ARMORICAIN	A-Centre-Sud	17,4-1	17,4-1		17	7.4.1	
12	7 Mayordonii	B-Ouest-Nord Est			17,4-1		,4-1	
TTGL	LA LOIRE	Cas général	18,1-1	18,1-1				
		A-her2 n°57			19		,1-1	
9	TABLES CALCAIRES	Cas général	18,1-1	18,1-1				
9	TABLES CALCAINES	Exogène de l'HER 10			18	,1-1		
		Exogène de l'HER 21	18,1-1	18,1-1	1	9-5		
		Exogène de l'HER 21			1	9-3		
10	COTES CALCAIRES EST	Cas général	18,1-1	18,1-1		18	,1-1	
		Exogène de l'HER 4	10,1-1	10,1-1	1	9-5		
4	VOSGES	Cas général				1	9-5	
22	ARDENNES	Exogène de l'HER 10		18,1-1				
22	ARDENINES	Cas général				17	,4-1	
18	ALSACE	Cas général					18,1-1	_
18	ALSACE	Exogène de l'HER 4				19-5		

^{(*):} Cours d'eau classés TGCE selon la typologie nationale, mais dont la surface intégrée de bassin versant n'atteint pas 10 000 km² au site d'observation (**): Cours d'eau classés TGCE selon la typologie européenne du GIG « Large Rivers » (tous cours d'eau dont la surface intégrée de bassin versant atteint ou dépasse 10 000 km² au site d'observation

En grisé : type inexistant

a-b : a = valeur de référence ; b = valeur minimale

Les valeurs de l'IBD₂₀₀₇ figurant dans ce tableau ont pris en compte la décision de la commission du 12 février 2018 relative à l'inter-étalonnage pour les cours d'eau.

1.1.2.2. Indice biologique diatomées pour le département de la Réunion

L'indice biologique diatomées à utiliser est l'indice diatomique Réunion (IDR - code Sandre 8062) décrit dans le guide méthodologique pour la mise en œuvre d'indices biologiques en outremer - l'indice diatomique Réunion (IDR).

Le tableau 26 ci-dessous indique les valeurs inférieures des limites de classe, en EQR, par type de cours d'eau pour l'IDR, par type de cours d'eau, sous la forme suivante : a-b-c-d (a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l'état moyen, d = limite inférieure de l'état médiocre). Le tableau 27 ci-dessous indique les valeurs de référence, par type de cours d'eau pour l'IDR.

La classification de l'état pour l'élément de qualité biologique « diatomées » s'établit en calculant la moyenne des indices obtenus à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté ; puis, en comparant cette moyenne aux limites de classe indiquées dans le tableau 26 ci-dessous.

La note en EQR est calculée à l'aide du système d'évaluation de l'état des eaux. Le principe de calcul est le suivant :

Note en EQR = (note observée) / (note de référence du type)

Tableau 26 : valeurs inférieures des limites des classes, exprimées en EQR, par type de cours d'eau pour l'IDR

Diatomées des cours d'eau de la Réunion EQR-IDR		Catégories	ies de taille de cours d'eau						
Hydroécorégions	Très grands	Grands	Moyen	Petits	Très petits				
Zone naturelle Ouest (de la Rivière des Pluies au Nord à la Rivière des Remparts au Sud)			0,980 - 0,940 - 0,760 - 0,420						
Zone naturelle Est (de la Rivière Sainte –Suzanne au Nord à la Rivière de l'Est au Sud)			0,9875 - 0,935						

Tableau 27 : valeurs de référence par type de cours d'eau pour l'IDR

de l'état médiocre En grisé : type inexistant

Diatomées des cours d'eau de la Réunion IDR	Catégories de taille de cours d'eau							
Hydroécorégions	Très grands	Grands	Moyen Petits		Très petits			
Zone naturelle Ouest (de la Rivière des Pluies au Nord à la Rivière des Remparts au Sud)			19,7					
Zone naturelle Est (de la Rivière Sainte –Suzanne au Nord à la Rivière de l'Est au Sud)			19					
En grisé : type inexistant								

1.1.2.3. Indice biologique diatomées pour les départements de la Guadeloupe et de la Martinique

L'indice biologique diatomées à utiliser est l'indice diatomique antillais (IDA – code Sandre 8053) décrit dans le guide méthodologique pour la mise en œuvre d'indices biologiques en outremer - indice diatomique antillais (IDA).

Le tableau 28 ci-dessous indique les valeurs inférieures des limites de classe, en EQR, par type de cours d'eau pour l'IDA, par type de cours d'eau, sous la forme suivante : a-b-c-d (a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l'état moyen, d = limite inférieure de l'état médiocre). Le tableau 29 ci-dessous indique les valeurs de référence, par type de cours d'eau pour l'IDA.

La classification de l'état pour l'élément de qualité biologique « diatomées » s'établit en calculant la moyenne des indices obtenus à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté ; puis, en comparant cette moyenne aux limites de classe indiquées dans le tableau 28 ci-dessous.

La note en EQR est calculée à l'aide du système d'évaluation de l'état des eaux. Le principe de calcul est le suivant :

Note en EQR = (note observée) / (note de référence du type)

Tableau 28 : valeurs inférieures des limites de classe, exprimées en EQR, par type de cours d'eau pour l'IDA

Diatomées des cours d'eau des Antilles EQR-IDA				Catégories de taille de cours d'eau						
Bassin]	Hydroécorégions	Très grands	Grands	Moyen Petits		Très petits			
G 11	1	Basse-Terre plaine nord-est								
Guadeloupe	3	Basse-Terre volcans			0,975 – 0,915					
Mantiniana	1	Pitons du Nord								
Martinique	2 Mornes du Sud et plaine du Lamentin*				0,925 - 0,80	- 0,61 - 0,38				

a-b-c-d : a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l'état moyen, d = limite inférieure de l'état médiocre

^{# :} Absence de références

En grisé : type inexistant

^(*) Sauf Lézarde de Martinique, cours d'eau issu de l'HER « Pitons du Nord » qui traverse ensuite rapidement la Plaine du Lamentin. Ce cours d'eau est à évaluer sur tout son cours sur la grille « <u>Pitons du Nord</u> »

Tableau 29 : valeurs de référence par type de cours d'eau pour l'IDA

Diatomées des cours d'eau des Antilles IDA			Catégories de taille de cours d'eau						
Bassin	Hydroécorégions		Très grands	Grands	Moyen Petits		Très petits		
Cuadalauma	1	Basse-Terre plaine nord-est							
Guadeloupe	3	Basse-Terre volcans			19,63				
Martinique	1	Pitons du Nord							
wiai unique	2	Mornes du Sud et Plaine du Lamentin *			1	8			

En grisé : type inexistant

1.1.2.4. Indice biologique diatomées pour le département de la Guyane

L'indice biologique diatomées à utiliser est l'indice de polluo-sensibilité spécifique (IPS - code Sandre 1022) adapté à la Guyane conformément au du guide méthodologique (dès parution).

Le tableau 30 ci-dessous indique les valeurs inférieures des limites de classe, en EQR, par type de cours d'eau pour l'IPS, sous la forme suivante : a-b-c-d (a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l'état moyen, d = limite inférieure de l'état médiocre). Le tableau 31 ci-dessous indique les valeurs de référence, par type de cours d'eau pour l'IPS.

La classification de l'état pour l'élément de qualité biologique « diatomées » s'établit en calculant la moyenne des indices obtenus à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté ; puis, en comparant cette moyenne aux limites de classe indiquées dans le tableau 30 ci-dessous.

La note en EQR est calculée à l'aide du système d'évaluation de l'état des eaux. Le principe de calcul est le suivant :

Note en EQR = (note observée) / (note de référence du type)

^(*) Sauf Lézarde de Martinique, cours d'eau issu de l'HER « Pitons du Nord » qui traverse ensuite rapidement la Plaine du Lamentin. Ce cours d'eau est à évaluer sur tout son cours sur la grille « <u>Pitons du Nord</u> »

Tableau 30 : valeurs inférieures des limites des classes d'état, exprimées en EQR, par type de cours d'eau pour l'IPS

	iatomées des cours d'eau de Guyane EQR-IPS	Catégories	s de taille de cours d'eau						
	Hydroécorégions	Très grands	Grands Moyens Petits Très petits						
1	Plaine littorale	0,92 - 0,78 - 0,58 - 0,32*		0,97 – 0,8	5 - 0,63 - 0,35				
2	Bouclier guyanais	0.02 0.70 0.50 0.22							
3	Exogènes de l'HER 2	0,9	92 - 0.78 - 0.58 - 0.32						

a-b-c-d : a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l'état moyen, d = limite inférieure de l'état médiocre

Tableau 31 : Valeurs de référence par type de cours d'eau pour l'IPS

	iatomées des cours d'eau de Guyane IPS	Catégories de taille de cours d'eau							
	Hydroécorégions	Très grands	Grands Moyens Petits Très pet						
1	Plaine littorale	17,4*	18						
2	Bouclier guyanais		17.4						
3	Exogènes de l'HER 2		17,4						

^{* :} les très grands cours d'eau traversant l'hydroécorégion « plaine littorale » sont considérés comme exogène de l'hydroécorégion « bouclier guyanais ». En conséquence, la grille de l'HER « bouclier guyanais » s'applique.

1.1.3. Macrophytes

L'indice biologique macrophytes à utiliser est l'indice biologique macrophytique en rivières (IBMR - code Sandre 2928) mis en œuvre dans le respect de la norme NF T90-395.

Le tableau 32 ci-dessous indique les valeurs inférieures des limites de classe, en EQR, par type de cours d'eau pour l'IBMR. Le tableau 33 ci-dessous indique les valeurs de référence, par type de cours d'eau pour l'IBMR

La classification de l'état pour l'élément de qualité biologique « macrophytes » s'établit en calculant la moyenne des indices obtenus à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté ; puis, en comparant cette moyenne aux limites de classe indiquées dans le tableau 32 ci-dessous.

La note en EQR est calculée à l'aide du système d'évaluation de l'état des eaux. Le principe de calcul est le suivant:

^{* :} les très grands cours d'eau traversant l'hydroécorégion « plaine littorale » sont considérés comme exogène de l'hydroécorégion « bouclier Guyanais ». En conséquence, la grille de l'HER « bouclier guyanais » s'applique.

Tableau 32 : valeurs inférieures des limites des classes d'état, exprimées en EQR, par type de cours d'eau pour l'IBMR

ELEMENTS DE	INDICE	LIMITES DES CLASSES D'ETAT IBMR en EQR					
ELEMENTS DE QUALITE		[Très bon / Bon[[Bon / Moyen[[Moyen / Médiocre[[Médiocre / Mauvais[
Macrophytes	IBMR	0,92	0,77	0,64	0,51		

Les valeurs de l'IBMR figurant dans ce tableau ont pris en compte la décision de la commission du 12 février 2018 relative à l'inter-étalonnage.

Tableau 33 : valeurs de référence, par type de cours d'eau, pour l'IBMR

V	aleurs de référe	ence pour l'IBMR	Caté	gories de	e taille d	e cours	s d'eau		
Hydroéco	orégions de niveau 1	Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2	Très Grands	Grands	Moyens	Petits	Très Petits		
		Cas général		1.1	17	13,09			
20	DEPOTS ARGILO SABLEUX	Exogène de l'HER 9		11	,17				
		Exogène de l'HER 21		13	,09				
21	MASSIF CENTRAL NORD	Cas général		13,09	13,17	13,17	14,61		
		Cas général		9,38	13,17		14		
2	MASSIF	Exogène de l'HER 19			12,94				
3	CENTRAL SUD	Exogène de l'HER 8			13,17				
		Exogène de l'HER 19 ou 8		9,38					
17	DEPRESSIONS	Cas général					11,17		
17	SEDIMENTAIRES	Exogène de l'HER 3 ou 21	9,3	38	11.17	11,17	14		
	DI ADIE GAONE	Exogène de l'HER 3 ou 21			11,17				
1.5		Exogène de l'HER 5							
15	PLAINE SAONE	Cas général	0.20		11,1	17	12,94		
		Exogène de l'HER 4	9,38						
_	JURA / PRE-	Cas général		11,17		12,94			
5	ALPES DU NORD	Exogène de l'HER 2	9,38	11	,17				
TTGA	FLEUVES ALPINS	Cas général	9						
2	ALPES INTERNES	Cas général				#			
7	PRE-ALPES DU	Cas général			11	,17			
	SUD	Exogène de l'HER 2	0.29	11	,17				
		Exogène de l'HER 2 ou 7	9,38	11,17					
6	MEDITEDDAMES	Exogène de l'HER 7							
6	MEDITERRANEE	Exogène de l'HER 8	0.20	11	,17				
		Exogène de l'HER 1	9,38						

		Cas général			11	,17		
8	CEVENNES	Cas général		13	,09		14	
8	CEVENNES	A-her2 n°70					14,61	
16	CORSE	A-her2 n°22		12.00	13,17		12.17	
16	CORSE	B-her2 n°88		13,09			13,17	
19	GRANDS	Cas général				12,94		
19	CAUSSES	Exogène de l'HER 8		12	,94			
11	CAUSSES	Cas général				12,94	11,17	
11	AQUITAINS	Exogène de l'HER 3 et/ou 21	9,	38	11,	17		
		Exogène des HER 3, 8, 11 ou 19	9,38	9,38	11,17			
14	COTEAUX	Exogène de l'HER 3 ou 8		9,36	12,94			
14	AQUITAINS	Cas général			11		1,17	
		Exogène de l'HER 1	9,	38	12,94	11,17		
13	LANDES	Cas général		13,09				
1	PYRENEES	Cas général		12,94				
12	ARMORICAIN	A-Centre-Sud		13,09				
12	ARWORICAIN	B-Ouest-Nord Est			1.	5,09		
TTGL	LA LOIRE	Cas général	9					
		A-her2 n°57			11,	17		
9	TABLES	Cas général		9,38		11,17		
9	CALCAIRES	Exogène de l'HER 10						
		Exogène de l'HER 21	9,38		38			
		Exogène de l'HER 21]	<i>J</i> 0			
10	COTES CALCAIRES EST	Cas général	9,38				11,17	
		Exogène de l'HER 4	7,30	11,17	11,17			
4	VOSGES	Cas général		11,17		14,61		
22	ADDENNIEC	Exogène de l'HER 10	9,38					
	ARDENNES	Cas général		11	11,17		14,61	
18	ALSACE	Cas général				11,17		
10	ALSACE	Exogène de l'HER 4		11	,17	14,61		

Conformément à l'arrêté du 25 janvier 2010 modifié établissant le programme de surveillance de l'état des eaux, l'élément de qualité macrophytes n'est pas pertinent dans les DOM.

1.1.4. Poissons

1.1.4.1. Indice biologique poissons pour la métropole

L'indice biologique poissons à utiliser est l'indice poissons rivière (IPR - code Sandre 7036) mise en œuvre dans le respect de la norme NF T90-344.

Les limites d'application de l'indice sont précisées dans le document suivant : l'IPR, notice de présentation et d'utilisation (CSP, avril 2006).

Le tableau 34 ci-dessous indique les valeurs des limites de classe (selon l'ordre a-b-c-d) par type de cours d'eau pour l'indice biologique poissons. Les limites de chaque classe sont prises en compte de la manière suivante :

- pour l'état très bon : [0 ; a (valeur de la limite incluse)] ;
- pour les états bon, moyen et médiocre :] respectivement a, b, c (valeur de la limite exclue) ; respectivement b, c, d (valeur de la limite incluse)] ;
- pour l'état mauvais : > d (valeur de la limite exclue).

La classification de l'état pour l'élément de qualité biologique « poissons » s'établit en calculant la moyenne des indices obtenus à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté ; puis, en comparant cette moyenne aux limites de classe indiquées dans le tableau 34 ci-dessous.

Tableau 34 : valeurs inférieures des limites des classes d'état, exprimées par type de cours d'eau pour l'IPR

	IPR	Catégories de taille de cours d'eau							
Hydro	écorégions de niveau 1	Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2	Très Grands	Grands	Moyens	Petits	Très Petits		
		Cas général			5-16	*-25-36			
20	DEPOTS ARGILO SABLEUX	Exogène de l'HER 9		5-16*-	25-36				
	SADLEUA	Exogène de l'HER 21		5-16*-	25-36				
21	MASSIF CENTRAL NORD	Cas général			5-16*-25-36		5-16*-25-36		
		Cas général			5-16*-25-36		5-16*-25-36		
2	MASSIF CENTRAL	Exogène de l'HER 19			5-16*-25-36				
3	SUD	Exogène de l'HER 8			5-16*-25-36				
		Exogène de l'HER 19 ou 8		5-16*-25-36					
17	DEPRESSIONS	Cas général		5-16*-25-36			6		
17	SEDIMENTAIRES	Exogène de l'HER 3 ou 21	5-16-25-36		5-16 ³	*-25-36			
		Exogène de l'HER 3 ou 21			5-16*-25-36				
15	PLAINE SAONE	Exogène de l'HER 5			5-16*-25-36				
13	PLAINE SAUNE	Cas général	5-16-25-36			5-16*-25-3	6		
		Exogène de l'HER 4	5-16-25-36						
5	JURA / PRE-ALPES DU				5-16	*-25-36			
	NORD	Exogène de l'HER 2	5-16-25-36	5-16*-	25-36				
TTGA	FLEUVES ALPINS	Cas général	3-10-23-30						
2	ALPES INTERNES	Cas général				*-25-36			
7	PRE-ALPES DU SUD	Cas général		5-16*-25-36		5-16*-25-36			
	122 122 25 56 565	Exogène de l'HER 2	5-16-25-36	5-16*-	25-36				
		Exogène de l'HER 2 ou 7	112 22 30	5-16*-25-36					
6	MEDITERRANEE	Exogène de l'HER 7							
		Exogène de l'HER 8	5-16-25-36	5-16*-	25-36				
		Exogène de l'HER 1							

		Cas général		5-16*-25-36				
	CEVENNIEG	Cas général		5-	16*-25-36			
8	CEVENNES	A-her2 n°70			5-16*-25-36	j		
16	CORSE	A-her2 n°22			щ			
10	CORSE	B-her2 n°88			#			
19	GRANDS CAUSSES	Cas général			5-16*-25-36			
19	GRANDS CAUSSES	Exogène de l'HER 8		5-16*-25-36				
11	CAUSSES AQUITAINS	Cas général			5-16*-25-36	5-16*-25-36		
		Exogène de l'HER 3 et/ou 21	5-16-25-36	5-16*-25-	36			
		Exogène des HER 3, 8, 11 ou 19	3-10-23-30	5-16*-25-36				
14	COTEAUX	Exogène de l'HER 3 ou 8		3-10*-23-30				
14	AQUITAINS	Cas général		5-16*-25-	36	5-16*-25-36		
		Exogène de l'HER 1	5-16-25-36	3-10*-23-	30			
13	LANDES	Cas général		5-	16*-25-36	5-16*-25-36		
1	PYRENEES	Cas général				3-10*-23-30		
12	ARMORICAIN	A-Centre-Sud		5-16*-25-36		5-16*-25-36		
12	ARMORICAIN	B-Ouest-Nord Est				5-16*-25-36		
TTGL	LA LOIRE	Cas général	5-16-25-36					
		A-her2 n°57		5-	16*-25-36			
9	TABLES CALCAIRES	Cas général	5-16-25-36	5-16*-25-	36	5-16*-25-36		
9	TABLES CALCAIRES	Exogène de l'HER 10						
		Exogène de l'HER 21	5-16-25-36	5-16*-25-36				
	COTTES CALICATRES	Exogène de l'HER 21						
10	COTES CALCAIRES EST	Cas général	5-16-25-36	5-	16*-25-36	*-25-36		
	LS1	Exogène de l'HER 4	3-10-23-30	5-16*-25-36				
4	VOSGES	Cas général		5-16*-25-36				
22	ARDENNES	Exogène de l'HER 10	5-16-25-36					
22	AKDENNES	Cas général		5-	16*-25-36			
18	ALSACE	Cas général			5-16*-25-36	5		
10	ALSACE	Exogène de l'HER 4		5-16*-25-	36			

a-b-c-d : a = limite très bon état / bon état, b = limite bon état / état moyen, c = limite état moyen / état médiocre, d = limite état médiocre / état mauvais

Les valeurs de l'IPR figurant dans ce tableau ont pris en compte la décision de la commission du 12 février 2018 relatif à l'inter-étalonnage. En grisé : type inexistant

En gris clair: Bien que potentiellement pertinents partout, le résultat de l'évaluation pourra être à valider à dire d'expert pour certaines stations de ces types au regard des limites d'application de l'indice consignées dans la notice IPR (CSP, avril 2006). Ces limites concernent notamment les stations de très grands cours d'eau ou celles situées en zones apiscicoles ou assimilables

: l'IPR ne s'applique pas à la Corse.

16*: dans les cas ou l'altitude du site d'évaluation est supérieure ou égale à 500 m, la valeur de 14,5 doit être utilisée au lieu de 16

1.1.4.2. Indice biologique poissons pour le département de la Réunion

L'indice biologique poissons à utiliser est l'indice Réunion poissons (IRP) décrit dans le guide méthodologique pour la mise en œuvre d'indices biologiques en outre-mer - indice Réunion poissons - IRP.

Le tableau 35 ci-dessous indique les valeurs inférieures des limites de classe pour l'Indice Réunion Poisson, par type de cours d'eau, sous la forme suivante : a-b-c-d (a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l'état moyen, d = limite inférieure de l'état médiocre). Le tableau 36 ci-dessous indique les valeurs de référence, par type de cours d'eau pour l'IRP.

La classification de l'état pour l'élément de qualité biologique « poissons » s'établit en calculant la moyenne des indices obtenus à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté ; puis, en comparant cette moyenne aux limites de classe indiquées dans le tableau 35 ci-dessous.

La note en EQR est calculée à l'aide du système d'évaluation de l'état des eaux. Le principe de calcul est le suivant:

Note en EQR = (note observée) / (note de référence du type)

Tableau 35 : valeurs inférieures des limites des classes d'état, exprimées en EQR, par type de cours d'eau pour l'IRP

Poissons des cours d'eau de la Réunion EQR-IRP	Catégories de taille de cours d'eau								
Hydroécorégions	Très grands	Grands	Moyen	Petits	Très petits				
Cirques au vent			1 - >0,8 - 0,6 - 0,4	1 - >0,8 - 0,6 - 0,4					
Cirques sous le vent			1 - >0,8 - 0,6 - 0,4	1 - >0,8 - 0,6 - 0,4					
Versants au vent			1 - >0,8 - 0,6 - 0,4						
Versants sous le vent			1 - >0,8 -	0,6 - 0,4					

a-b-c-d : a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l'état moyen, d = limite inférieure de l'état médiocre

En grisé : type inexistant

Tableau 36 : valeurs de référence par type de cours d'eau pour l'IRP

Poissons des cours d'eau de la Réunion IRP	Catégories de taille de cours d'eau								
Hydroécorégions	Très grands	Grands	Moyen	Petits	Très petits				
Cirques au vent			15	15					
Cirques sous le vent			15	15					
Versants au vent			15						
Versants sous le vent			15						
En grisé : type inexistant									

1.1.4.3. Indice biologique poissons de département de Guyane

L'indice biologique poissons à utiliser est l'indice poissons Guyane global : IPG-global (par opposition à l'IPG Résidus, utilisé uniquement pour du diagnostic) décrit dans le guide méthodologique pour la mise en œuvre d'indices biologiques en outre-mer - l'indice poissons Guyane global (IPG-global).

Le tableau 37 ci-dessous indique les valeurs inférieures des limites de classe, en EQR, pour l'IPG Global, par type de cours d'eau, sous la forme suivante : a-b-c-d (a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l'état moyen, d = limite inférieure de l'état médiocre).

La classification de l'état pour l'élément de qualité biologique « poissons » s'établit en calculant la moyenne des indices obtenus à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté ; puis, en comparant cette moyenne aux limites de classe indiquées dans le tableau 38 ci-dessous.

Tableau 37 : valeurs inférieures des limites des classes d'état, exprimées en EQR, par type de cours d'eau pour l'IPG global

Poissons des cours d'eau de Guyane EQR-IPG-global		Catégories de taille de cours d'eau							
Hydroécorégions		Très grands Grands Moyen		Moyen	Petits	Très petits			
1	Plaine littorale	0,98 - 0,74 - 0,49 - 0,24			Indice non applicable	Indice non applicable			
2	Bouclier guyanais				Indice non applicable	Indice non applicable			

a-b-c-d : a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l'état moyen, d = limite inférieure de l'état médiocre

1.1.5. Cas des départements d'outre-mer

Pour les départements d'outre-mer l'élément de qualité biologique « macrophytes » n'est pas pertinent.

En outre, les connaissances actuelles ne permettent pas de fixer des indices et valeurs seuils fiables pour l'élément de qualité poissons dans les départements de la Guadeloupe et de la Martinique et pour l'ensemble des éléments de qualité biologique pour le département de Mayotte. Certains éléments de qualité et paramètres physico-chimiques généraux, ou certaines valeurs seuils, n'y sont pas non plus adaptés. Des indicateurs spécifiques adaptés à l'écologie de ces milieux sont en cours de développement. Dans cette attente, le préfet coordonnateur de bassin évalue l'état écologique des masses d'eau de surface, au regard des définitions normatives de l'annexe 1 au présent arrêté, en s'appuyant sur les connaissances actuelles, des indicateurs provisoires et le dire d'expert.

1.2. Eléments physico-chimiques généraux pour les cours d'eau

Les éléments physico-chimiques généraux interviennent uniquement comme facteurs explicatifs des conditions biologiques. Pour la classe « bon » et les classes inférieures², les valeurs seuils de ces éléments physico-chimiques sont fixées de manière à respecter les limites de classes établies pour les éléments biologiques, correspondant au bon fonctionnement des écosystèmes.

Les limites de classes sont exprimées par paramètre et non par élément de qualité (par exemple, l'oxygène dissous est un paramètre constitutif de l'élément bilan d'oxygène).

Le tableau 38 ci-dessous indique les valeurs des limites de classe pour les paramètres des éléments physico-chimiques généraux pour les cours d'eau. Les limites de chaque classe sont prises en compte de la manière suivante :]valeur de la limite supérieure (exclue), valeur de la limite inférieure (incluse)].

Ces paramètres et valeurs seuils sont applicables dès lors que les protocoles de prélèvements et d'analyse sont conformes à ceux prescrits dans l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux en application de l'article R. 212-22 du code de l'environnement.

La classification s'établit en comparant à ces valeurs le percentile 90 obtenu à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté (se reporter à l'annexe 9 point 2 relatif à la chronique de données à utiliser). Lorsque les concentrations mesurées pour un paramètre sont inférieures à sa limite de quantification, la valeur de la concentration à prendre en compte est celle de la limite de quantification de ce paramètre divisée par deux.

Pour les paramètres « oxygène dissous » et « taux de saturation en O₂ dissous » la classification s'établit en comparant à ces valeurs le percentile 10 obtenu à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté (se reporter à l'annexe 9 point 2 relatif à la chronique de données à utiliser).

Pour l'élément de qualité « acidification », la classification s'établit ;

- en comparant le percentile 10 obtenu à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté aux valeurs du pHmin ;
- en comparant le percentile 90 obtenu à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté aux valeurs du pHmax ;

La classe d'état de l'élément de qualité « acidification » est déterminée par la classe d'état la moins bonne de ces deux paramètres (pHmin ou pHmax).

Pour la classification en « très bon » état écologique, des conditions physico-chimiques peu ou pas perturbées sont requises. Dans l'attente de la détermination de valeurs fiables adaptées aux différents types de masses d'eau de surface, les valeurs indiquées dans la présente annexe des limites de classes entre le bon et le très bon état des paramètres physico-chimiques généraux sont à considérer à titre indicatif.

² Classes « médiocre », « moyen », « mauvais ».

1.2.1. Cas général

Tableau 38 : valeurs des limites des classes d'état pour les paramètres physico-chimiques généraux pour les cours d'eau.

		Limites des classes d'état							
Paramètres par élément de qualité (unités)	Code	Très bon / Bon	Bon / Moyen	Moyen / Médiocre	Médiocre / Mauvais				
Bilan de l'oxygène 1									
Oxygène dissous (mg O ₂ /l)	1311	8	6	4	3				
Taux de saturation en O ₂ dissous (%)	1312	90	70	50	30				
DBO ₅ (mg O ₂ /l)	1313	3	6	10	25				
Carbone organique dissous (mg C/l)	1841	5	7	10	15				
Température ²									
Eaux salmonicoles	1201	20	21,5	25	28				
Eaux cyprinicoles	1301	24	25,5	27	28				
Nutriments									
PO_4^{3-} (mg $PO_4^{3-}/1$)	1433	0,1	0,5	1	2				
Phosphore total (mg P/l)	1350	0,05	0,2	0,5	1				
NH_4^+ (mg NH_4^+ /l)	1335	0,1	0,5	2	5				
NO_2 (mg NO_2 -/l)	1339	0,1	0,3	0,5	1				
NO_3 (mg NO_3 -/l)	1340	10	50	*	*				
Acidification ¹									
pH minimum	1302	6,5	6	5,5	4,5				
pH maximum	1302	8,2	9	9,5	10				
Salinité									
Conductivité	1303	*	*	*	*				
Chlorures	1337	*	*	*	*				
Sulfates	1338	*	*	*	*				

¹ acidification : en d'autres termes, à titre d'exemple, pour la classe bon état, le pH min est compris entre 6,0 et 6,5 ; le pH max entre 9,0 et 8,2.

Pour les éléments de qualité physico-chimiques, les limites supérieure et inférieure de la classe « bon » suffisent pour la classification de l'état écologique. En effet, en principe, seuls les éléments biologiques peuvent déterminer un état écologique « médiocre » ou « mauvais ».

La distinction de 5 classes d'état pour les paramètres généraux peut être pertinente pour affiner l'étude de l'impact des pressions et identifier des priorités d'intervention.

Dans ces cas, on pourra utiliser les valeurs des limites de classes entre l'état « moyen » et l'état « médiocre » ainsi qu'entre l'état « médiocre » et le « mauvais » état des paramètres physicochimiques généraux indiquées dans le tableau 38 de la présente annexe.

1.2.2. Exceptions typologiques

Les exceptions typologiques peuvent concerner de manière assez générale une hydro-écorégion ou un groupe de masse d'eau donné. Elles peuvent conduire à ne pas considérer l'élément ou le paramètre physico-chimique correspondant, ou à ajuster les valeurs seuils, pour l'évaluation de l'état des types de masses d'eau concernées.

Les éléments de la présente partie 1.2.2. indiquent les adaptations à apporter aux valeurs du tableau 38 pour les adapter aux cas de certains types de milieux particuliers.

² Pour l'élément de qualité température, un paramètre supplémentaire « intermédiaire » non référencé ici est également utilisé. Pour ce dernier, il est recommandé d'utiliser les limites de classe du paramètre « salmonicoles ».

^{*:} les connaissances actuelles ne permettent pas de fixer des seuils fiables pour cette limite.

Dans ces cas particuliers, le fait que la valeur de ces éléments ou paramètres soit naturellement influencée sans cause anthropique significative devra pouvoir être justifié.

Tableau 39 : type 1 -cours d'eau naturellement pauvre en oxygène

PARAMETRES	LIMITES SUPÉRIEURE et inférieure du bon état
Bilan de l'oxygène	
Oxygène dissous (mg O2/l)]7,5 - 6]
Taux de saturation en O2 dissous (%)]80 -65]

Tableau 40 : type 2 - cours d'eau naturellement riches en matières organiques

PARAMETRES	LIMITES SUPERIEURE et inférieure du bon état
Bilan de l'oxygène	
Carbone organique dissous (mg C/l)]8 - 9]

Tableau 41 : type 3 - cours d'eau naturellement froids (température de l'eau inférieure à 14° C) et peu alcalins (pH max inférieur à 8,5 unité pH) moins sensibles aux teneurs en NH4 + (HER 2 Alpes internes : cours d'eau très petits à moyens)

PARAMETRES	LIMITES SUPERIEURE et inférieure du bon état
Nutriments	
NH ₄ + (mg NH ₄ +/1)]0,1 - 1]

Tableau 42 :type 4 - cours d'eau naturellement acides

PARAMETRES	LIMITES SUPERIEURE et inférieure du bon état
Acidification	
pH minimum]6 - 5,8]
pH maximal]8,2 - 9]

Type 5 : cours d'eau des zones de tourbières :

Non prise en compte du paramètre carbone organique.

Type 6 : cours d'eau de température naturellement élevée (HER 6 : Méditerranée) :

Non prise en compte du paramètre température car les températures estivales sont naturellement élevées de manière récurrente du fait des influences climatiques.

1.2.3. Cas des exceptions locales

Certains éléments de qualité ou paramètres, ou certaines valeurs seuils, s'avèrent non pertinents localement, sur certains sites ou certaines masses d'eau, car la valeur de ces éléments ou paramètres sont naturellement influencés localement sans cause anthropique significative. Dans ce cas, on ne considère pas ces éléments ou paramètres pour évaluer l'état de cette ou de ces masses d'eau. Cette non-utilisation devra être dûment justifiée, avec des arguments objectifs montrant la cause naturelle et l'absence d'influence anthropique significative sur cet élément ou paramètre.

Si les raisons naturelles influençant les éléments ou paramètres de physico-chimie soutenant la biologie entraînent une impossibilité d'atteindre les valeurs seuils du type concerné pour un ou

des éléments biologiques qui en dépendent directement, ces éléments ou paramètres biologiques et physico-chimiques ne sont pas pris en compte pour évaluer l'état de cette ou de ces masses d'eau.

1.2.4. Cas des départements d'outre-mer

Certains éléments de qualité ou paramètres physico-chimiques généraux, ou certaines valeurs seuils, ne sont pas adaptés aux spécificités des départements d'outre-mer.

Dans ce cas, le préfet coordonnateur de bassin évalue l'état écologique des masses d'eau de surface en s'appuyant sur les connaissances actuelles et le dire d'expert.

1.3. Polluants spécifiques de l'état écologique pour les cours d'eau

Les polluants spécifiques de l'état écologiques et les normes de qualité environnementales correspondantes à prendre en compte dans l'évaluation de l'état écologique des eaux de surface continentales métropolitaines sont listés dans les tableaux 43 et 44 ci-dessous :

Tableau 43:	polluants s	spécifiques	non synthétiques

Code Sandre	Nom substance	NQE en moyenne annuelle – eaux douces de surface [µg/L]
1383	Zinc	7,8
1369	Arsenic	0,83
1392	Cuivre	1
1389	Chrome	3,4

Les polluants spécifiques non synthétiques concernent l'ensemble des bassins métropolitains et DOM.

Pour les métaux et leurs composés, il est possible de tenir compte lors de l'évaluation des résultats obtenus au regard des NQE:

- de la dureté, du pH ou d'autres paramètres liés à la qualité de l'eau qui affectent la biodisponibilité des métaux, par exemple en utilisant un modèle de calcul de la fraction dissoute biodisponible de type BLM (Biotic Ligand Model). De tels modèles sont disponibles pour le cuivre et le zinc, dont les NQE correspondent aux conditions maximales de biodisponibilité ;
- des concentrations de fonds géochimiques naturelles.

Tableau 44 : polluants spécifiques synthétiques

		Bassins pour lesquelles la norme s'applique												
				ussiii	S POU	I ICSC	luciic	5 14 1	OI IIIC	у в пр	piiqu			
Code Sandre	Nom substance	Adour Garonne	Artois-Picardie	Loire-Bretagne	Rhin-Meuse	Rhône-Méditerranée	Corse		Guadeloupe		Martinique	Mayotte	Réunion	NQE en moyenne annuelle – eaux douces de surface [µg/L]
1136	Chlortoluron	X	X	X	X	X	X	X	X	X	X	X	X	0,1
1670	Métazachlore	X	X	X	X	X	X	X						0,019
1105	Aminotriazole	X	X	X	X	X	X	X						0,08
1882	Nicosulfuron	X		X	X	X	X	X						0,035
1667	Oxadiazon	X	X	X	X	X	X	X	X	X	X	X	X	0,09
1907	AMPA	X	X	X	X	X	X	X			X			452
1506	Glyphosate	X	X	X	X	X	X	X			X			28
1113	Bentazone	X												70
1212	2,4 MCPA	X	X	X	X	X	X	X	X	X	X	X	X	0,5
1814	Diflufenicanil		X	X	X	X	X	X						0,01
1359	Cyprodinil		X			X	X							0,026
1877	Imidaclopride		X					X						0,2
1206	Iprodione		X											0,35
1141	2,4D		X	X	X			X	X	X	X	X	X	2,2
1951	Azoxystrobine		X											0,95
1278	Toluène			X										74
1847	Phosphate de tributyle		X			X	X							82
1584	Biphényle							X						3,3
5526	Boscalid			X				X						11,6
1796	Métaldéhyde			X				X						60,6
1694	Tebuconazole				X									1
1474	Chlorprophame		X			X	X	X						4
1780	Xylène							X						1
1209	Linuron								X	X	X	X	X	1
1713	Thiabendazole				X						X			1.2
1234	Pendiméthaline					X	X							0,02
1866	Chlordécone*								X		X			5e-06*

*En complément, pour la chlordécone, les normes suivantes s'appliquent :

- Norme de qualité environnementale en moyenne annuelle dans le biote : 3 μg/kg,
- Norme de qualité environnementale en moyenne annuelle dans les eaux côtières et de transition : 5e-07 μg/L.

Lorsque le suivi a été réalisé dans le biote, la norme biote s'applique et suffit à évaluer l'état.

Les modalités d'interprétation des résultats d'analyses sont identiques à celles définies à l'article 11 relatif à l'évaluation de l'état chimique des masses d'eau du présent arrêté.

1.4. Éléments hydromorphologiques pour les cours d'eau

Conformément aux définitions de l'annexe 1, la classification d'une masse d'eau en très bon état écologique requiert des conditions peu ou pas perturbées des éléments de qualité hydromorphologiques (morphologie, régime hydrologique, continuité des cours d'eau). Conformément aux définitions de l'annexe 1, la classification d'une masse d'eau en bon état écologique requiert des conditions des éléments de qualité hydromorphologiques permettant d'atteindre les valeurs des éléments de qualité biologique correspondant au bon état écologique.

1.4.1. Cours d'eau de métropole

Dans l'attente de la détermination des indicateurs et valeurs seuils pertinents des éléments hydromorphologiques, les informations disponibles sur les pressions hydromorphologiques, notamment celles issues du « système relationnel d'audit de l'hydromorphologie des cours d'eau » (SYRAH-CE) sont à considérer pour l'attribution de la classe « très bon » aux éléments de qualité hydromorphologiques.

1.4.2. Cours d'eau des DOM

Dans l'attente de la détermination des indicateurs et valeurs seuils pertinents des éléments hydromorphologiques, les informations disponibles sur les pressions hydromorphologiques, notamment celles issues du « référentiel hydromorphologique ultramarin » (RHUM) sont à considérer pour l'attribution de la classe « très bon » aux éléments de qualité hydromorphologiques.

1.5. Situation de lacunes d'outils d'interprétation

C'est le cas où des valeurs numériques de limites de classes ne sont pas encore établies pour un élément de qualité de l'état écologique hors polluants spécifiques et pour un type de masse d'eau donnée, et où des données sont disponibles pour cet élément de qualité sur une masse d'eau de ce type.

Dans ce cas, ces données sont utilisées pour évaluer l'état de cet élément de qualité lorsque l'interprétation de ces données permet d'apporter des informations valables pour évaluer l'état de cette masse d'eau au regard des définitions de l'annexe 1 au présent arrêté.

1.6. Outils diagnostics complémentaires pour les cours d'eau de métropole

1.6.1. Éléments biologiques invertébrés pour la métropole

Pour l'HER 9A, l'indice biologique invertébrés à utiliser à titre complémentaire pour les cours d'eau est l'indice invertébrés multi-métrique (I₂M₂) décrit au paragraphe 1.1.1.1 de l'annexe II.

Au cours du 3^{ème} cycle (2021-2027), l'indice cours d'eau I₂M₂ (pour HER 9A) doit être utilisé comme outil d'amélioration de la connaissance, de diagnostic et d'amélioration de l'évaluation de l'état écologique, en vue de son appropriation par l'ensemble des acteurs, mais également de définir précisément, grâce aux remontées de terrains, les limites d'application réelles.

1.6.2. Éléments biologiques poissons pour la métropole

L'indice biologique poissons pouvant être utilisé à titre complémentaire est l'indice poisson de rivières + (IPR+) avec le protocole d'échantillonnage de la norme XP T90-383 (puis NF T90-383 dès son homologation).

Cet outil pourra être utilisé préférentiellement sur :

- les sites de l'ensemble des types de la grille IPR (cf. tableau 34) fortement multi-impactés, en particulier par les pressions hydromorphologiques ;
- les sites des types de la grille IPR (cf. tableau 34) correspondant aux cases grisées où la truite commune est théoriquement présente selon la typologie de Huet.

L'IPR+ est décrit dans les publications suivantes:

Pont D., Delaigue O., Eyoub S. 2015. Manuel d'utilisation de l'IPR+, révision de l'indice poisson rivière pour l'application de la DCE. Rapport technique Irstea.

Pont D., Delaigue O., Belliard J., Marzin A., Logez M. (2013). Programme IPR+: révision de l'indice poisson rivière pour l'application de la DCE – version V.2.0 de l'indicateur, Février 2013. Rapport technique Irstea, 208 p.

Le tableau 45 ci-dessous indique les valeurs des limites de classe par type de cours d'eau pour l'indice biologique Poissons. Les limites de chaque classe sont prises en compte de la manière suivante :

- pour l'état très bon : [valeur de la limite inférieure (exclue), valeur de la limite supérieure (incluse)] ;
- pour les états bon, moyen et médiocre :]valeur de la limite inférieure (exclue), valeur de la limite supérieure (incluse)] ;
- pour l'état mauvais : [valeur de la limite inférieure (incluse), valeur de la limite supérieure (incluse)].

La classification s'établit en calculant la moyenne des indices obtenus sur chacune des années à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté; puis, en comparant cette moyenne aux limites de classe indiquées dans le tableau 45 ci-dessous.

Tableau 45 : valeurs	limites des class	es d'état, en EO	R. par type de cou	rs d'eau nour	l'indice IPR+
1 de lecti 15 : l'altetil 5	tillities wes eterss	cs a cial, ch LQ	i, pui type de cou	s a can pour	t trictice II It.

CLASSES D'ÉTAT	VALEURS DES LIMITES supérieure et inférieure de classe d'état
Très bon	[1;0,855[
Bon	[0,855; 0,700[
Moyen	[0,700; 0,467[
Médiocre	[0,467; 0,233[
Mauvais	[0,233 ; 0,000]

2. <u>Indices, valeurs seuils et modalités de calcul de l'état des éléments de qualité de l'état écologique des plans d'eau</u>

L'ensemble des indices utilisables seront calculés à l'aide du système d'évaluation de l'état des eaux présenté au point 3 de l'annexe 9 dès mise à disposition sur l'outil ou d'un système équivalent utilisant les mêmes algorithmes. Les résultats fournis ne devront pas être arrondis.

Les indices, valeurs seuils et modalités de calcul de l'état des éléments de qualité de l'état écologique des plans d'eau sont les suivants :

2.1. Éléments biologiques pour les plans d'eau

2.1.1. Phytoplancton

L'indice biologique phytoplanctonique à utiliser est l'IPLAC : indice phytoplanctonique lacustre. L'IPLAC est un indice d'évaluation de l'état écologique des plans d'eau constitué de deux métriques, l'une rendant compte de la biomasse phytoplanctonique totale (chlorophylle (a)) et l'autre de l'abondance et de la composition taxonomique. Il s'applique aux lacs naturels et aux plans d'eau d'origine anthropique de la métropole.

Le tableau 46 ci-dessous indique les valeurs des limites de classe pour l'indice IPLAC exprimées en EQR. Les formules de calcul des valeurs de référence sont précisées dans le rapport technique : Feret T. Laplace-Treyture C., 2013. IPLAC : l'indice phytoplancton lacustre : méthode de développement, description et application nationale 2012. Rapport final. Irstea 69 p.

La classification de l'état pour l'élément de qualité biologique « phytoplancton » s'établit en calculant la moyenne des notes d'indices (exprimées en EQR) obtenus à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté ; puis en comparant cette moyenne aux limites de classe indiquées dans le tableau 46 ci-dessous.

Tableau 46 : valeurs des limites de classes d'état, exprimées en EQR, pour l'indice phytoplanctonique lacus	stre
(IPLAC)	

		LIMITES DES CLASSES D'ETAT en EQR							
ELEMENTS DE QUALITE	INDICE	Très bon / Bon	Bon / Moyen	Moyen / Médiocre	Médiocre / Mauvais				
Phytoplancton	IPLAC (Indice planctonique Lacustre)	0,8	0,6	0,4	0,2				

Les valeurs obtenues de l'indice sont valides dès lors que les protocoles de prélèvement et d'analyse sont conformes à ceux prescrits dans l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux, en application de l'article R. 212-22 du code de l'environnement, dans les limites d'application des modèles qui sont précisées dans le document suivant : Feret T. Laplace-Treyture C., 2013. IPLAC : l'indice phytoplancton lacustre : méthode de développement, description et application nationale 2012. Rapport final. Irstea 69 p. Se référer aussi à ce document pour le détail de la méthode de calcul de l'indice.

2.1.2. Macrophytes

L'indice biologique macrophytique à utiliser est l'IBML : indice biologique macrophytique en lac (code Sandre : 7982). L'IBML est un indice de bioindication constitué à ce jour d'une métrique, la *Note de Trophie*. Le tableau 47 ci-dessous indique les valeurs de limites de classe de cette métrique exprimées en EQR, applicables aux plans d'eau naturels et d'origine anthropique de la typologie nationale. Ces valeurs sont calculées par méta-types IBML de plans d'eau

regroupant les types nationaux de plans d'eau macrophytes pertinents selon leur altitude et leur alcalinité.

La classification de l'état pour l'élément de qualité biologique « macrophytes » s'établit en calculant la moyenne des indices obtenus à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté ; puis, en comparant cette moyenne aux limites de classe indiquées dans le tableau 47 ci-dessous. Les formules de calcul des valeurs de référence seront précisées dans le rapport technique suivant : Boutry S., Bertrin V. Dutartre A., 2015. Indice biologique macrophytique lac (IBML). Notice de calcul. Irstea, EABX.30 p.

Tableau 47 : valeurs de limites de classes d'état, exprimées en EQR, applicables aux plans naturels et d'origine anthropique

		LIMITES	DES CLASSES	D'ETAT IBM	L en EQR
ELEMENTS DE QUALITE	INDICE	Très bon / Bon	Bon / Moyen	Moyen / Médiocre	Médiocre / Mauvais
Macrophytes	IBML	0,8	0,6	0,4	0,2

Le détail du calcul de la métrique *Note de Trophie* constitutive de l'IBML, les règles de calcul et d'évaluation sont disponibles dans le document suivant : Boutry S., Bertrin V., Dutartre A., 2015. Indice biologique macrophytique lac (IBML). Notice de calcul. Irstea, EABX. 30 p.

2.1.3. Poissons

L'indice biologique poisson à utiliser est l'IIL : Indice Ichtyofaune Lacustre (code Sandre : 1018).

Le tableau 48 ci-dessous indique les valeurs des limites de classe par type de plans d'eau pour l'IIL exprimées en EQR. Cet indice s'applique aux seuls plans d'eau naturels de métropole de la typologie nationale des plans d'eau. Il ne s'applique pas aux plans d'eau d'origine anthropique de la typologie nationale ni aux DOM.

Les limites de chaque classe sont prises en compte de la manière suivante :

- pour l'état très bon : [valeur de la limite inférieure (incluse), valeur de la limite supérieure (exclue)[; pour les états bon, moyen et médiocre : [valeur de la limite inférieure (incluse), valeur de la limite supérieure (exclue)[;
- pour l'état mauvais : < valeur de la limite supérieure (exclue).

L'indice ichtyofaune lacustre à utiliser est détaillé dans le guide méthodologique intitulé « Principes et méthodes de calcul de l'indice ichtyofaune lacustre, IIL. janvier 2018 (auteurs : Logez M., Maire A. et Argillier C.) », avec le protocole d'échantillonnage NF EN 14757 (2005).

La classification de l'état pour l'élément de qualité biologique « poissons » s'établit en calculant la moyenne des indices obtenus à partir des données acquises conformément aux dispositions de l'annexe 9 du présent arrêté ; puis, en comparant cette moyenne aux limites de classe indiquées dans le tableau 48 ci-dessous. Les valeurs de référence, par plan d'eau, ainsi que la formule de calcul de la note en EQR sont précisées dans le rapport technique intitulé « Principes et

méthodes de calcul de l'indice ichtyofaune lacustre, IIL. Version 2017 » (auteurs : Logez M., Maire A. et Argillier C.).

Tableau 48 : valeurs de limites des classes d'état, exprimées en EQR, pour l'indice ichtyofaune lacustre (IIL)

		LIMITE	ES DES CLASSE	S D'ETAT IIL	en EQR
ELEMENTS DE QUALITE	INDICE	Très bon / Bon	Bon / Moyen	Moyen / Médiocre	Médiocre / Mauvais
Poisson	IIL	0,733	0,494	0,35	0,175

2.1.4. Cas des départements d'outre-mer

Les indices biologiques des 2.1.1, 2.1.2 et 2.1.3 ne s'appliquent pas aux départements d'outremer. Les connaissances actuelles ne permettent pas de fixer des indices et valeurs seuils fiables pour les éléments de qualité biologique dans les départements d'outre-mer. Certains éléments de qualité ou paramètres physico-chimiques généraux, ou certaines valeurs-seuils, n'y sont pas non plus adaptés. Le préfet coordonnateur de bassin évalue l'état écologique des masses d'eau de surface, au regard des définitions normatives de l'annexe 1 au présent arrêté, en s'appuyant sur les connaissances actuelles, des indicateurs provisoires et le dire d'expert.

2.2. Éléments physico-chimiques généraux pour les plans d'eau

2.2.1. Cas général

Le tableau 49 ci-dessous indique les valeurs des limites de classe pour les paramètres des éléments physico-chimiques généraux pour les plans d'eau. Les limites de classes pour les paramètres des éléments nutriment et transparence varient en fonction de la profondeur moyenne des plans d'eau. Pour les plans d'eau soumis à de fortes variations de niveau d'eau, la profondeur moyenne du plan d'eau est établie en référence à la cote moyenne du plan d'eau ou à la cote normale d'exploitation. Les méthodes utilisées pour déterminer les limites de classes sont précisées dans le document suivant :

Danis, P.-A. & V. Roubeix (2014): Physico-chimie soutenant la biologie des plans d'eau nationaux: Principes et méthodes de définition des valeurs-seuils & Amélioration des connaissances par la télédétection. Rapport d'avancement. Convention Onema/Irstea 2013. Pp 82.

Tableau 49 : paramètres physico-chimiques des éléments nutriments et transparence et calculs des valeurs seuils

Paramètres	TI *//	T,	P	aramètre:	s de calcu	il	Cal	cul
physico- chimiques	Unité	Limite	a	b	c	d	Z _{moy} = pr moyen	
		Très bon-Bon	44,174	-0,315	57,744	-0,324		
Phoshore total	μg P.L ⁻¹	Bon-Moyen	61,714	-0,310	95,841	-0,267		
(médiane ¹)	μg I .L	Moyen-Médiocre	86,234	-0,306	159,92	-0,210		
		Médiocre-Mauvais	120,63	-0,302	268,66	-0,153	minimu [9*7	m entre _v ^ b] et
		Très bon-Bon	223,58	-0,248	199,25	-0,223	$[\mathbf{c}^*(\mathbf{Z}_{mo})]$	-
Ammonium (valeur	μg NH ₄ .L ⁻¹	Bon-Moyen	290,91	-0,245	283,69	-0,185	[Camo	y · -/
maximale)		Moyen-Médiocre	378,71	-0,241	404,53	-0,145		
,		Médiocre-Mauvais	494,03	-0,238	578,19	-0,106		
Profondeur du		Très bon-Bon	1,1741	0,284	0,9989	0,277		
disque de	***	Bon-Moyen	0,8703	0,279	0,6492	0,228	maximu	
Secchi	m	Moyen-Médiocre	0,6447	0,275	0,4208	0,180	$[\mathbf{c}^* \mathbf{Z}_{mo}]$	_y ^ b] et _v +1)^d]
(médiane)		Médiocre-Mauvais	0,4766	0,271	0,2722	0,131	[C (Zino	y. 1) u j
							$Z_{moy} \le 15$	$Z_{\text{moy}} > 15$
		Très bon-Bon					2200	1200
Nitrates (valeur	μg NO ₃ .L ⁻¹	Bon-Moyen					5300	2600
maximale)	μg NO3.L	Moyen-Médiocre					12600	5600
,		Médiocre-Mauvais	1				30100	12100

¹ Pour le Phosphore total, le fait de prendre en compte la valeur médiane peut parfois conduire, selon les mesures disponibles, à des valeurs faibles et non délassantes en contradiction avec le résultat de l'indice IPLAC. Dans ces cas, une expertise sur la distribution des valeurs de phosphore total est à réaliser et les valeurs seuils de phosphore total calculées pourront être considérées à titre indicatives.

Les valeurs seuils calculées à l'aide du tableau 50 ci-dessus sont arrondies :

- au microgramme/litre supérieur pour le phosphore total et l'ammonium ;
- au centimètre près inférieur pour la profondeur et la transparence.

Tableau 50 : autres paramètres physico-chimiques généraux

		Limites des c	classes d'état	
Paramètres par élément de qualité	Très bon / Bon	Bon / Moyen	Moyen / Médiocre	Médiocre / Mauvais
Bilan de l'oxygène 1				
Présence ou absence d'une désoxygénation de l'hypolimnion en % du déficit observé entre la surface et le fond pendant la période estivale (pour les lacs stratifiés)	*	50	*	*
Salinité				
Acidification			*	
Température				

¹ Bilan de l'oxygène : Paramètre et limite donnés à titre indicatif (CEMAGREF). L'élément de qualité est classé en état bon si la désoxygénation est inférieure à 50%.

L'Ilox, indice de saturation en oxygène, peut être pris en compte à titre complémentaire afin conforter l'évaluation de l'état de l'élément de qualité relatif au bilan d'oxygène.

^{*} pas de valeurs établies, à ce stade des connaissances ; seront fixées ultérieurement

Ces paramètres et valeurs seuils sont applicables dès lors que les protocoles de prélèvements et d'analyse sont conformes à ceux prescrits dans l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux en application de l'article R. 212-22 du code de l'environnement et dans le guide pour la demande de prestation d'échantillonnage et d'analyse physico-chimique dans le cadre de la surveillance DCE publié par le ministère de la Transition écologique et solidaire, dans sa version la plus récente.

La classification de l'état physico-chimique prend en compte les données acquises conformément aux dispositions de l'annexe 9 du présent arrêté. La classification de l'état physico-chimique des plans d'eau s'établit de la manière suivante :

- lorsque le plan d'eau fait l'objet d'une seule année de suivis au cours de la période à prendre en compte au titre de l'annexe 9, la classification s'établit en comparant aux valeurs du tableau n°49 :
 - la médiane des valeurs observées pour le phosphore total et la profondeur du disque de Secchi ;
 - la valeur maximale pour l'ammonium et les nitrates ;
- lorsque le plan d'eau fait l'objet de plusieurs années de suivis au cours de la période à prendre en compte au titre de l'annexe 9, la classification s'établit en comparant aux valeurs du tableau n°49 les valeurs médianes des évaluations annuelles telles que calculées ci-dessus.

Lorsque les concentrations mesurées pour un paramètre sont inférieures à sa limite de quantification, la valeur de la concentration à prendre en compte est celle de la limite de quantification de ce paramètre divisée par deux.

2.2.2. Cas des exceptions locales

Certains éléments de qualité ou paramètres, ou certaines valeurs seuils, s'avèrent non pertinents localement, sur certains sites ou certaines masses d'eau, car la valeur de ces éléments ou paramètres sont naturellement influencés localement sans cause anthropique significative. Dans ce cas, on ne considère pas ces éléments ou paramètres pour évaluer l'état de cette ou de ces masses d'eau. Cette non-utilisation devra être dûment justifiée, avec des arguments objectifs montrant la cause naturelle et l'absence d'influence anthropique significative sur cet élément ou paramètre.

Si les raisons naturelles influençant les éléments ou paramètres de physico-chimie soutenant la biologie entraînent une impossibilité d'atteindre les valeurs seuils du type concerné pour un ou des éléments biologiques qui en dépendent directement, on ne considère pas non plus ces éléments ou paramètres pour évaluer l'état de cette ou de ces masses d'eau.

2.2.3. Cas des départements d'outre-mer

Certains éléments de qualité ou paramètres physico-chimiques généraux, ou certaines valeurs seuils, ne sont pas adaptés aux spécificités des départements d'outre-mer.

Dans ce cas, le préfet coordonnateur de bassin évalue l'état écologique des masses d'eau de surface en s'appuyant sur les connaissances actuelles et le dire d'expert.

2.3. Polluants spécifiques de l'état écologique pour les plans d'eau

Les principes définis à la partie 1.3 de la présente annexe pour les cours d'eau sont applicables aux plans d'eau.

2.4. Éléments hydromorphologiques pour les plans d'eau

Conformément aux définitions de l'annexe 1, la classification d'une masse d'eau plan d'eau en très bon état écologique requiert des conditions peu ou pas perturbées des éléments de qualité hydromorphologiques (morphologie et régime hydrologique).

Conformément aux définitions de l'annexe 1, la classification d'une masse d'eau en bon état écologique requiert des conditions des éléments de qualité hydromorphologiques permettant d'atteindre les valeurs des éléments de qualité biologique correspondant au bon état écologique.

Un indicateur hydromorphologique lacustre dénommé LAKHYC a été produit par le pôle R&D AFB-Irstea. Il permet d'apprécier la qualité hydromorphologique des masses d'eau en combinant l'observation des caractéristiques et des altérations hydromorphologiques des plans d'eau :

- à l'échelle du bassin versant (nature géologique, présence d'obstacles à la continuité sur les principaux tributaires, occupation des sols, imperméabilisation des sols et modifications des flux liquides...);
- à l'échelle des corridors (urbanisation des corridors, densité/fragmentation de la ripisylve, voies de communication dans les corridors, etc.);
- à l'échelle du plan d'eau (forme et artificialisation des rives, structure et gestion des macrophytes et de la ripisylve, forme et profondeurs de la cuvette, structure et nature du substrat, variation des niveaux d'eau, etc.).

Il fournit des classes de qualité hydromorphologique par paramètre et un indicateur global agrégeant ces différents résultats.

Dans l'attente des premiers retours d'expérience et d'une future normalisation, cet indicateur pourra être utilisé pour guider les opérateurs dans l'appréciation par expertise de la qualité hydromorphologique des plans d'eau surveillés. Cette évaluation pourra être complétée par l'utilisation des données brutes issues de l'application BAVELA (bassin versant lacustres), CORILA (corridor rivulaire lacustre), ALBER (altération des berges), CHARLI (caractérisation des habitats et des rivages lacustres) et Bathymétrie .

ANNEXE 4

MODALITÉS D'ÉTABLISSEMENT DES NORMES DE QUALITÉ ENVIRONNEMENTALE DES POLLUANTS SPÉCIFIQUES DE L'ÉTAT ÉCOLOGIQUE

Les normes de qualité environnementale sont établies par le ministère en charge de l'écologie, sur proposition de l'AFB, dans la mesure du possible, à partir de données écotoxicologiques tant aiguës que chroniques pour les trois taxons suivants :

- les algues et/ou macrophytes;
- les daphnies ou organismes représentatifs des eaux salines ;
- les poissons.

Tout autre taxum pour lequel il existe des données est également utilisé dans la mesure où il serait pertinent pour le type de masse d'eau concerné.

Les facteurs utilisés pour établir les normes de qualité environnementale en concentration moyenne annuelle sont définis de manière appropriée selon la nature et la qualité des données disponibles et selon les orientations données dans le "Technical guidance document for deriving environmental quality standards" (Guidance Document No. 27 according to the common implementation strategy for the water framework directive" (E.C., 2011) ou tout autre version plus récente de ce document en cours de révision lors de la publication de cet arrêté.

Notamment, les facteurs de sécurité pour établir les normes en concentration moyenne annuelle sont établis conformément aux règles présentées dans le tableau 51 suivant :

Tableau 51 : facteurs de sécurité pour établir les normes en concentration moyenne annuelle

	FACTEUR DE SECURITE
Au moins une concentration effective 50 aiguë pour chacun des trois niveaux trophiques du dossier de base	1 000
Une CSEO ³ chronique (poissons ou daphnies ou un organisme représentatif des eaux salines)	100
Deux CSEO chroniques pour les espèces représentant deux niveaux trophiques (poissons et/ou daphnies ou un organisme représentatif des eaux salines et/ou algues)	50
CSEO chroniques pour au moins trois espèces (normalement poissons, daphnies ou un organisme représentatif des eaux salines et algues) représentant trois niveaux trophiques	10
Autres cas, y compris les données obtenues sur le terrain ou écosystèmes modèles, qui permettent de calculer et d'appliquer des facteurs de sécurité plus précis	Évaluation cas par cas

Dans tous les cas, la méthodologie la plus récente définie au niveau communautaire s'applique pour l'établissement des normes de qualité environnementale.

³ CSEO : Concentration sans effet observable. (Traduction de l'anglais NOEC : no observed effect concentration)

Lorsque l'on dispose de données sur la persistance et la bio-accumulation, il convient de les prendre en compte dans la détermination de la valeur définitive de la norme de qualité environnementale.

Les normes ainsi obtenues sont soumises à un examen critique des pairs. Elles sont comparées avec les éléments provenant des études sur le terrain. Lorsque l'on constate des anomalies, il convient d'obtenir de nouveaux éléments écotoxicologiques afin de permettre le calcul d'une norme de qualité environnementale plus robuste basée sur un facteur de sécurité plus précis. D'une manière générale, les nouveaux éléments scientifiques et de terrain sont pris en compte afin d'actualiser les normes.

ANNEXE 5

MÉTHODOLOGIE D'ATTRIBUTION D'UN POTENTIEL ÉCOLOGIQUE POUR LES MASSES D'EAU FORTEMENT MODIFIÉES (MEFM) ET ARTIFICIELLES (MEA) DOUCES DE SURFACE

La classification du potentiel écologique des masses d'eau fortement modifiées (MEFM) et artificielles (MEA) s'établit en 4 classes : bon et plus ; moyen ; médiocre ; mauvais.

1. Principes généraux

L'évaluation du potentiel écologique des MEFM et MEA est définie par une méthode mixte croisant les données disponibles relatives à l'état du milieu et une démarche alternative fondée sur les mesures d'atténuation des impacts, c'est à dire la réduction des pressions hydromorphologiques hors contrainte technique obligatoire (CTO).

Les valeurs des éléments de qualité correspondant au bon potentiel écologique sont celles obtenues lorsque sont mises en œuvre toutes les mesures d'atténuation des impacts, qui :

- ont une efficacité sur l'amélioration de la qualité et de la fonctionnalité des milieux (y compris, par exemple, des mesures concernant l'amélioration des modes de gestion hydraulique ou la maîtrise des flux de nutriments pour contenir l'eutrophisation) ; - sont techniquement et socio-économiquement faisables sans remettre en cause le ou les usages à la base de la désignation comme MEFM ou MEA.

De plus, des mesures peuvent être nécessaires pour assurer notamment la continuité écologique, même lorsque le bon potentiel d'une masse d'eau est atteint, afin, notamment, de respecter l'objectif de non-dégradation de cette masse d'eau ou pour respecter ou atteindre le bon état/potentiel d'autres masses d'eau.

2. Attribution d'un potentiel écologique aux masses d'eau fortement modifiées

2.1. Typologie de cas MEFM et contraintes techniques obligatoires

Pour appliquer cette démarche alternative, il est demandé de s'appuyer sur la typologie de cas MEFM, présentée au tableau 52 de la présente annexe (grand type de masse d'eau par type d'ouvrage ou d'aménagement physique). Les différents types de cas de MEFM sont homogènes en termes d'altérations hydromorphologiques impactant les éléments de qualité biologique. Cette typologie, élaborée au niveau national et présentée ci-après, constitue le principal cadre d'analyse pour l'identification des contraintes techniques obligatoires (définies au § 2.2 de la présente annexe) par types de cas de MEFM.

Il convient de souligner que l'existence d'une contrainte technique obligatoire (CTO) dans un domaine (par exemple une contrainte de marnage fort saisonnier) n'empêche pas la mise en œuvre de mesures d'atténuation des impacts dans ce même domaine (par exemple des modalités de gestion du niveau d'eau d'une retenue limitant l'impact sur les communautés aquatiques).

Tableau 52 : typologie des cas MEFM

									Con	train	ites	Tech	nniqu	ies (Obliga	toire	s
USAGE principal cf.DCE art4,3	navigation	hydro-électrícité	stockage ressource AEP irrigation	Protection/Inondation	Types de cas MEFM		exemples	profondeur minimale/maintien d'une ligne d'eau	obligation d'un certain débit et chute	marnage fort saisonnier	marnage faible court terme	marnage faible	volume utilisable	régime restitution	Rectification, déplacement du tracé du CE/Chenal de navigation/Rayon de courbure	Blocage lit mineur	Limitation du champ d'expansion de crues
	Ť				Grands cours d'eau navigué à petit gabarit (G - TG, en plaine)	1	Doubs	х	-					_	Х	х	
navigation					(Petite) Rivière de plaine canalisée, à petit gabarit (P - M, en plaine)	2	Sambre	х			<u> </u>	<u> </u>			Х	х	
Havigation					voies d'eau à grand gabarit (G, TG, en plaine)	3	Saône	х	i						Х	х	
					Fleuves Alpins aménagés voie d'eau et hydroélectricité (TTG)	4	Rhône Rhin	х	х			İ	х		х	х	
					Retenue à marnage important (> 3m) et cycle annuel (souvent pour hydroélectricité ou soutien d'étiage)	5			х	х			х				
stockage (AEP,					Retenue à marnage de faible intensité et forte fréquence (quelques jours)	6			х		х	i	х				
hydroélec, irrigation) et					Retenue à marnage de faibles intensité et fréquence	7						х	х				
régularisation des débits					Cours d'eau aval retenue (débit modifié, tronçon court-circuité -TCC), affectés par des modifications morphologiques substantielles 1	8, 9								х			
				ı	Cours d'eau aval restitution (régime modifié, éclusées) affectés par des modifications morphologiques substantielles1	6, 9				х	х			х			
					Endiguement étroit ² sur rivière à fort transport sédimentaire (tressage)	10										х	Х
protection					Endiguement étroit ² sur rivière à dynamique moyenne à faible (méandrage)	11	Gier									х	х
protection contre les inondations et le drainage des sols					Endiguement large ³ sur rivière à fort transport sédimentaire (tressage)	12											х
uraillage des SOIS					Endiguement large ³ sur rivière à dynamique moyenne à faible (méandrage)	13	Loire										х
					petite rivière rectifiée/recalibrée ou artificielle (marais, zones humides)	14	Limagne								х	x	х

¹ Les modifications d'ordre hydrologique ne suffisent pas pour désigner des masses d'eau en MEFM ; les types de cas 8 et 9 concernent donc des masses d'eau avec des modifications morphologiques liées aux modifications du débit, substantielles, permanentes et étendues au regard de la taille de la masse d'eau

2.2. Définition des contraintes techniques obligatoires (CTO)

<u>Profondeur minimale/maintien d'une ligne d'eau</u>: pour la navigation, la CTO est de disposer d'une profondeur ou hauteur d'eau (mouillage) suffisante, qui se traduit le plus souvent par un maintien de la ligne d'eau constante (régulation hydraulique et barrage/écluses).

Obligation d'un certain débit et chute : la production d'hydroélectricité se base sur la notion de puissance électrique qui est fonction d'un débit, d'une hauteur de chute et du rendement des turbines installées.

² Endiguement étroit : inférieure à deux fois la largeur de plein bord

³ Endiguement large : supérieur à deux fois la largeur de plein bord

<u>Marnage fort saisonnier</u>: sur les retenues cette contrainte est liée au stockage de la ressource pour la production d'hydroélectricité en périodes de forte demande énergétique (hiver ou été) ou le soutien d'étiage.

<u>Marnage faible court terme et marnage faible saisonnier :</u> liée à une activité de stockage de la ressource (AEP, irrigation, hydroélectricité).

<u>Volume utilisable</u>: liée à une activité de stockage de la ressource (AEP, irrigation, hydroélectricité, soutien d'étiage).

<u>Régime de restitution</u>: à l'aval des retenues les masses d'eau voient leur cycle hydrologique annuel modifié par les usages de l'eau stockée.

Rectification, déplacement du tracé du CE/Chenal de navigation/Rayon de courbure : pour la navigation, la géométrie du chenal (tracé en plan) est très contrainte, mais il existe une certaine marge de manœuvre entre les paramètres largeur et rayon de courbure. Ainsi, à rayon de courbure plus court, une largeur plus ample est nécessaire. Ces contraintes sont plus ou moins faciles à satisfaire en fonction du gabarit et de l'importance/morphologie du cours d'eau. Le drainage des sols s'est très souvent accompagné, *a minima*, d'un recalibrage du cours d'eau, voire d'une rectification.

<u>Blocage lit mineur</u>: le blocage du lit mineur n'est en théorie pas indispensable à la navigation, mais dans les faits, étant entendu que le cours d'eau doit passer sous les ponts et passer par les seuils/écluses, la marge de divagation au droit des ouvrages de navigation est quasi nulle. L'endiguement étroit pour la protection contre les inondations a eu pour but de canaliser les crues et a, de fait, supprimé toutes divagations possible du lit mineur.

<u>Limitation du champ d'expansion de crues</u> dans des zones à enjeu fort <u>(par exemple, zones urbanisées)</u>. Font partie des CTO les ouvrages qui protègent ces zones.

2.3. <u>Indicateurs biologiques et physico-chimiques pour les masses d'eau fortement modifiées (MEFM)</u>

2.3.1. Cas des MEFM Cours d'eau

Pour évaluer le potentiel écologique d'une MEFM cours d'eau, on utilise les indicateurs et limites de classes établies **sur les diatomées** à l'annexe 3 au présent arrêté (§ 1.1.2) **et sur les éléments physico-chimiques** à l'annexe 3 au présent arrêté (§ 1.2. Eléments physico-chimiques généraux et § 1.3. Polluants spécifiques de l'état écologique), en faisant application des règles d'agrégation mentionnées à l'annexe 2.

Certains paramètres physico-chimiques peuvent être impactés par les seules modifications morphologiques du milieu. Dans ce cas, une expertise ciblée peut conduire à adapter de nouveaux seuils, voire à ne pas retenir ces paramètres dans l'évaluation du potentiel écologique. L'argumentaire doit être solide et étayé. Cette disposition peut être appliquée aux paramètres de l'oxygène (concentration et taux de saturation) et la température, à l'exclusion de tout autre.

2.3.2. Cas des MEFM Plan d'eau

Pour évaluer le potentiel écologique d'une MEFM plan d'eau, on utilise les indicateurs et limites de classes établies **sur le phytoplancton** à l'annexe 3 au présent arrêté (§ 2.1.1) **et sur les**

éléments physico-chimiques à l'annexe 3 au présent arrêté (§ 2.2, § 2.3), en faisant application des règles d'agrégation mentionnées à l'annexe 2.

2.4. <u>Intégration des contraintes techniques obligatoires (CTO) aux résultats des indicateurs biologiques et physico-chimiques pour l'attribution d'une classe de potentiel écologique</u>

On considère que les pressions hydromorphologiques hors CTO se traduisent par un effet négatif sur les potentialités biologiques des masses d'eau.

Les mesures spécifiques pour atténuer ces pressions sont à identifier. Elles sont à hiérarchiser en fonction des effets attendus sur la réduction des pressions. On considère que le bon potentiel est atteint lorsque toutes les mesures d'atténuation jugées les plus efficaces ont été réalisées.

On attribue la classe de potentiel écologique selon les principes suivants :

Tableau 53 : définition des classes de potentiel écologique des MEFM selon le niveau de pression hydromorphologique identifié et les classes d'état des indices biologiques et physico-chimiques

		Classes d'état selon les indicateurs biologique et physico-chimiques mentionnés ci-dessus au point 2.3								
		Très bon	Bon	Moyen	Médiocre	Mauvais				
Pressions hydromorphologiques identifiées (hors CTO, à savoir celles imposées par l'usage)	Nulles à faibles	Bon potentiel écologique et plus	Bon potentiel écologique et plus	Potentiel écologique moyen	Potentiel écologique médiocre	Potentiel écologique mauvais				
	Moyen nes à fortes	Potentiel écologique moyen	Potentiel écologique moyen	Potentiel écologique moyen	Potentiel écologique médiocre	Potentiel écologique mauvais				

3. Attribution d'un potentiel écologique aux masses d'eau artificielles

Les principes généraux décrits au paragraphe 1 de la présente annexe s'appliquent aux masses d'eau artificielles (MEA), pour l'attribution d'un potentiel écologique.

ANNEXE 6

INDICATEURS ET VALEURS SEUILS DE L'ÉTAT ÉCOLOGIQUE DES EAUX LITTORALES

Les indicateurs, valeurs seuils et modalités de calcul des éléments de qualité de l'état écologique pour lesquels des méthodes sont disponibles actuellement pour établir des valeurs numériques fiables des limites des classes d'état sont indiqués pour les eaux côtières dans la partie 1 de la présente annexe, et pour les eaux de transition dans la partie 2 de la présente annexe.

1. <u>Indicateurs, valeurs seuils et modalités de calcul de l'état des éléments de qualité de l'état écologique des eaux côtières</u>

1.1. Éléments biologiques

1.1.1. Phytoplancton

Pour le phytoplancton, l'indice français comportera in fine les paramètres requis par la DCE :

- la chlorophylle a (indicateur de biomasse);
- les blooms (indicateurs d'efflorescence et d'abondance) ;
- la composition taxonomique.

La combinaison des trois métriques en un indice reste à définir.

Dans l'attente d'un indice plus complet, le classement des masses d'eau pour l'élément de qualité phytoplancton se fera avec deux paramètres (chlorophylle a et blooms) ; un EQR est calculé pour chaque paramètre ; l'indice final est la moyenne des EQR des deux paramètres.

1.1.1.1. Chlorophylle a

La métrique définie est le percentile 90 des valeurs de chlorophylle a, calculé sur des données mensuelles, et sur 6 ans. La grille de qualité est présentée dans le tableau 54 ci-dessous.

Tableau 54 : grille de qualité pour le paramètre chlorophylle a - Pour toutes les façades

		TYPE européen (1)	TYPES français concernés	MASSES D'EAU françaises concernées	LIMITES supérieure et inférieure du bon état (µg/l)	VALEUR de référence (µg/l)	RATIO de qualité écologique
Manche Atlantique	EC	NEA 1/26a	Tous	Toutes les masses d'eau côtières des districts Garonne, Loire, Seine] 4,4 -10]	3,33	0,08-0,17-0,33-0,76
Mer du Nord	EC	NEA 1/26b	Tous	Toutes les masses d'eau côtières du district Escaut	tières du] 10 - 15]		0,15-0,30-0,44-0,67
		Type I	Tous	FRDC04] 5 – 10]	3,33	0,08- 0,17-0,33-0,67
Méditerranée	EC	Type II A	Tous	Masses d'eau côtières de FRDC02a à FRDC02f incluse + masse d'eau côtière FRDC05] 1,92 - 3,5]	1,29	0,09-0,18-0,37-0,67
Wedterranee	EC	Type III W	Tous	Masses d'eau côtières de FRDC06a à FRDC10c incluse + masse d'eau côtière FRDC01] 1,18 - 1,89]	0,79	0,11-0,22-0,42-0,67
		Type Iles	Tous	FREC01ab à FREC04ac]0,75 – 1,22]	0,6	0,12-0,25-0,49-0,80

⁽¹⁾ La typologie européenne a été définie pour le phytoplancton uniquement.

1.1.1.2. Blooms/abondance

Pour le paramètre blooms, la métrique est définie comme le pourcentage d'échantillons pour lequel un taxon dépasse une valeur seuil. Deux valeurs seuils sont définies :

- 100 000 cellules pour les espèces de taille : \geq 20 μm ;
- 250 000 cellules pour les espèces de taille : $5\mu m \le x < 20 \mu m$.

La métrique se calcule pour l'ensemble des deux classes de taille, sur des données mensuelles, acquises toute l'année et durant six ans.

La grille de qualité est présentée dans le tableau 55 ci-dessous.

Type NEA 1/26a : océanique, ouvert, exposé ou protégé, euhalin, peu profond.

Type NEA 1/26b: mers fermées, exposé ou protégé, euhalin, peu profond.

Type I: sous forte influence des apports d'eaux douces; salinité annuelle moyenne < 34,5 psu.

Type II A: modérément influencés par les apports d'eaux douces; salinité annuelle moyenne de 34,5 à 37,5 psu.

Type III W: Côtes continentales, sans influence des apports d'eau douce; salinité annuelle moyenne > 37,5 psu.

Type III lles n'est actuellement pas pris en compte dans la typologie européenne.

Tableau 55 : grille de qualité pour le paramètre bloom-abondance - pour toutes les façades

		TYPE européen	TYPES français concernés	MASSES D'EAU françaises concernées	LIMITES supérieure et inférieure du bon état (% d'échantillons avec dépassement d'un seuil de bloom)	VALEUR de référence	RATIO DE qualité écologique
Mer du Nord Manche Atlantique	EC	NEA 1/26a et 26b	Tous (2)	Toutes les masses d'eau côtières des districts Escaut, Garonne, Loire, Seine	[20% - 39% [16,7%	0,19-0,24-0,43- 0,84
Méditerranée	EC	aucun	Tous	Toutes	1		

⁽²⁾ Sauf les masses d'eau côtières (MEC) sous influence des estuaires de la façade Manche-atlantique

1.1.1.3. Indicateur phytoplancton

La grille de qualité résultante (moyenne des EQR biomasse et abondance) est indiquée dans le tableau 56 ci-dessous.

Tableau 56 : grille de qualité pour l'indicateur phytoplancton -pour toutes les façades

		TYPE européen (1)	TYPES français concernés	MASSES D'EAU françaises concernées	LIMITES supérieure et inférieure du bon état (µg/l)	VALEUR de référence	RATIO de qualité écologique	
Manche Atlantique	EC	NEA 1/26a	Tous (2)	Toutes les masses d'eau côtières des districts Garonne, Loire, Seine	Sans objet	Sans objet	0,13-0,2-0,38-0,8	
Mer du Nord	EC	NEA 1/26b	Tous	Toutes les masses d'eau côtières du district Escaut	Sans objet	Sans objet]	0,17-0,27-0,44-0,75	
		Type I	Tous	FRDC04	Sans objet	Sans objet	0,13- 0,20-0,38- 0,75	
Méditerranée	EC	FC	Type II A	Tous	Masses d'eau côtières de FRDC02a à FRDC02f incluse + masse d'eau côtière FRDC05	Sans objet	Sans objet	0,14-0,21-0,40-0,75
		Type III W	Tous	Masses d'eau côtières de FRDC06a à FRDC10c incluse + masse d'eau côtière FRDC01	Sans objet	Sans objet	0,15-0,23-0,42-0,75	
		Type Iles	Tous	FREC01ab à FREC04acXX	Sans objet	Sans objet	0,15-0,24-0,46-0,82	

⁽²⁾ Sauf les masses d'eau côtières (MEC) sous influence des estuaires de la façade Manche-atlantique

1.1.2. Invertébrés benthiques de substrat meuble

Le classement des masses d'eau côtières des façades Mer du Nord, Manche et Atlantique, pour l'élément de qualité invertébrés benthiques se fera avec l'indice M-AMBI, qui intègre les trois paramètres requis par la DCE :

- AMBI : indice qui s'appuie sur la sensibilité/tolérance des espèces à un enrichissement du milieu ;
- la richesse spécifique ;
- la diversité (indice de Shannon-Weaver).

Le M-AMBI varie entre 0 et 1.

Le classement des masses d'eau côtières de la façade Méditerranéenne, pour l'élément de qualité invertébrés benthiques se fera avec l'indice AMBI.

La grille de qualité pour les invertébrés benthiques est présentée dans le tableau 57 ci-dessous.

Tableau 57 : grille de qualité pour l'indicateur invertébrés benthiques - pour toutes les façades

		TYPE européen	TYPES français concernés	MASSES D'EAU françaises concernées	VALEUR DE référence	RATIO de qualité écologique
Mer du Nord Manche Atlantique	EC	NEA 1/26	Tous	Toutes les masses d'eau côtières des districts Escaut, Garonne, Loire, Seine	sables fins plus ou moins envasés intertidaux AMBI = 1 Diversité = 4 Richesse spécifique = 58 sables fins plus ou moins envasés subtidaux AMBI = 1 Diversité = 4 Richesse spécifique = 35 sables fins battus AMBI = 1 Diversité = 3,5 Richesse spécifique = 15	0,2-0,39-0,53- 0,77
				ME de la Région Corse	1,28	
Méditerranée	EC	aucun		ME de la Région PACA	1,11	0,21-0,39-0,58- 0,83
				ME de la Région Languedoc Roussillon	0,88	

1.1.3. Macroalgues : façades Mer du Nord, Manche et Atlantique

Pour la Mer du Nord, la Manche et l'Atlantique, on distingue les macroalgues intertidales substrat dur, les macroalgues subtidales substrat dur et les macroalgues formant des blooms.

1.1.3.1. Macroalgues intertidales de substrat dur

L'indice de qualité utilisé est le CCO (Cover – Characteristic species – Opportunistic species). Il s'applique à l'intertidal rocheux et prend en compte la contribution de chaque ceinture à la couverture végétale d'un site donné, la richesse spécifique de chaque ceinture en espèces caractéristiques et l'importance du couvert des espèces opportunistes. L'indice correspond ainsi à la somme de trois sous-indices :

- le recouvrement global ; noté sur 40
- le nombre d'espèces caractéristiques de l'ensemble des ceintures présentes ; noté sur 30
- le recouvrement des espèces opportunistes, noté sur 30.

L'indice est composé en sommant les scores des 3 sous-indices. Sa valeur maximale est 100. Les classes de qualité ont une amplitude égale.

La grille de qualité pour les macroalgues intertidales de substrat dur est présentée dans le tableau 58 ci-dessous.

		TYPE européen	TYPES français concernés	MASSES D'EAU françaises concernées	VALEUR DE référence	RATIO de qualité écologique
Mer du Nord Manche Atlantique	E	NEA 1/26 - biotope B21 et A2		Toutes les masses d'eau côtières des districts Escaut et Seine ; Masses d'eau situées au nord de la Loire pour le district Loire		0,20-0,40-0,60-0,80

Tableau 58 : grille de qualité pour l'indicateur macroalgues intertidales de substrat dur

1.1.3.2. Macroalgues subtidales de substrat dur

L'indice de qualité présenté est inspiré du modèle CFR espagnol. Il se base sur le suivi de 8 métriques, mesurées à trois niveaux de profondeur (- 3m, -8m, -13m), quand elles existent. Les valeurs mesurées sont transformées en scores selon une grille prédéfinie, sur la base de données acquises tous les 3 ans (tous les ans pour les sites sensibles).

Tableau 59 : note maximale	par métrique de l'indice b	iologiaue pour le	les macoalgues subtidales de substrat dur

MÉTRIQUE	Notes
Métrique 1. Limites d'extension en profondeur des différentes ceintures algales (m C.M.*)	Note sur 30
Métrique 2. Densité des espèces d'algues définissant l'étagement (nb. individus / m²)	Note sur 20
Métrique 3. Nombre d'espèces d'algues caractéristiques ayant une occurrence > 10% (nb)	Note sur 20
Métrique 4. Densité d'espèces d'algues opportunistes (nb. individus / m²)	Note sur 20
Métrique 5. Présence d'espèces d'algues indicatrices de bon état écologique (oui/non)	Note 0-1
Métrique 6. Richesse spécifique algale totale (nb)	Note sur 10
Métrique 7. Longueur moyenne des stipes de <i>Laminaria hyperborea</i> (cm)	Note sur 20
Métrique 8. Surface de stipes de <i>Laminaria hyperborea</i> couverte par des épibioses (surface/ml)	Note sur 20

^{*} Côte Marine = Profondeur corrigée et rapportée au zéro des cartes marines françaises du SHOM

Les métriques sont assemblées comme suit :

- limite des ceintures (métrique 1) : note sur 30 ;
- densité des espèces définissant l'étagement (métrique 2) : note sur 20 ;
- composition spécifique (moyenne des métriques 3 et 4 à laquelle on ajoute le score de la métrique 5) : note sur 21 ;
- richesse spécifique totale (métrique 6) : note sur 10 ;
- épibioses (moyenne des métriques 7 et 8) : note sur 20.

L'indicateur du site est obtenu en rapportant sur 100 (règle de 3) la moyenne des notes des niveaux 1-2 et 3.

La grille de qualité pour les macroalgues subtidales de substrat dur est présentée dans le tableau 60 ci-dessous.

Tableau 60 ·	orille de a	aualité no	ur l'indicateur mad	croaloues si	uhtidales de	substrat dur
Tuvieuu oo .	griiie ae i	јишне рог	ur i inaicaiear mac	trouigues si	uviiaaies ae	e substrat aut

		TYPE européen	TYPES français concernés	MASSES D'EAU françaises concernées	VALEUR DE référence	RATIO de qualité écologique
			côte rocheuse peu turbide : C1, C2, C14, C 15		74,8	
Mer du Nord Manche Atlantique	EC	NEA 1/26	côte sablovaseuse peu turbide: C3, C4, C7, C9, C10, C11, C13, C17	Cf ME appartenant aux types concernés	56,8	0,25-0,45-0,65-0,85
			côte rocheuse ou sablo-vaseuse turbide : C12		80,8	

1.1.3.3. *Macroalgues opportunistes formant des blooms*

L'indicateur français, calculé sur la base de 3 suivis annuels (mai, juillet, septembre) tous les ans, a été développé en tenant compte des types de proliférations observées :

A-Marées vertes de type 1

Les marées vertes de type 1 définissent les développements massifs d'ulves ayant lieu dans les grandes baies sableuses. Ces marées vertes se forment à partir d'ulves dérivantes à multiplication végétative.

L'indicateur comprend 3 métriques :

- Métrique 1 : pourcentage maximum de l'aire potentiellement colonisable recouverte par les ulves (% couv max/APC).

- Métrique 2 : pourcentage moyen de l'aire potentiellement colonisable recouverte par les ulves (% couv moy/APC).
- Métrique 3 : fréquence des dépôts d'ulves > 1.5 % de l'aire potentiellement colonisable (f >1.5% APC).

Les seuils de qualité par métrique ont été définis à dire d'expert et des classes d'EQR équidistantes ont été définies, dans le tableau 61 ci-dessous.

Tableau 61 : seuils de qualité par métrique et EQR pour les macro-algues formant des blooms – marées vertes de types 1

Métrique 1	Métrique 2	Métrique 3	EQR par métrique et
Seuils	Seuils	Seuils	indicateur
[0-0,5[[0 - 0,25[[0-10[[1 - 0,825[
[0,5-1,5[[0,25-0,75[[10 – 30[[0,825 - 0,617[
[1,5 – 4[[0,75-2[[30 – 60[[0,617 - 0,4[
[4 – 10[[2-5[[60 – 90[[0,4-0,2[
[10 - 100]	[5 – 100]	[90 – 100]	[0,2-0]

B. Marées vertes de type 2

Les marées vertes de type 2 aussi nommées marées vertes d'arrachage se retrouvent également sur substrat sableux. La différence principale avec les marées vertes de type 1 réside dans le fait qu'elles ont une phase de développement fixée sur platier rocheux préalablement à leur échouage sur plage. Ce type de marée se retrouve essentiellement au sud de la Loire et en Normandie.

L'indicateur comprend 3 métriques :

- Métrique 1 : Pourcentage des dépôts printaniers d'ulves (mai) par rapport à la surface de substrat rocheux.
- Métrique 2 : Pourcentage moyen des dépôts estivaux d'ulves (juillet-septembre) par rapport à la surface de substrat rocheux.
- Métrique 3 : Pourcentage maximum de substrat meuble touché par des échouages d'ulves.

Les seuils de qualité par métrique ont été définis à dire d'expert et des classes d'EQR équidistantes ont été définies, dans le tableau 62 ci-dessous.

Tableau 62 : seuils de qualité par métrique et EQR pour les macro-algues formant des blooms – marées vertes de types 2

Métrique 1	Métrique 2	Métrique 3	EQR par métrique et
Seuils	Seuils	Seuils	indicateur
[0-1[[0 - 0,5[[0-0.5[[1 - 0,8[
[1 – 2[[0,5-1[[0,5-1,5[[0,8 - 0,6[
[2 – 10[[1 – 5[[1,5 – 4[[0,6 - 0,4[
[10 - 20[[5 – 10[[4 – 10[[0,4-0,2[
[10 - 200]	[10 - 100]	[10 - 100]	[0,2-0]

C. Marées vertes de type 3

Les marées vertes de types 3 se retrouvent sur les substrats vaseux. Elles sont constituées à la fois d'algues vertes en lame et d'algues vertes filamenteuses. A l'inverse des deux autres types de marées vertes, les algues sont, dans ce cas, peu mobiles.

L'indicateur comprend 2 métriques :

- Métrique 1 : Pourcentage maximum de l'aire potentiellement colonisable recouverte par les algues vertes (% max couv/APC).
- Métrique 2 : Aire affectée par les algues vertes (AA).

Les seuils de qualité par métrique ont été définis à dire d'expert et des classes d'EQR équidistantes ont été définies, dans le tableau 63 ci-dessous.

Tableau 63 : seuils de qualité par métrique et EQR pour les macro-algues formant des blooms – marées vertes de types 3

Métrique 1	Métrique 2	EQR par métrique et	
Seuils	Seuils	indicateur	
[0-5[[0 – 10[[1 - 0,8[
[5 – 15[[10 – 50[[0,8 - 0,6[
[15 – 25[[50 – 100[[0,6 - 0,4[
[25 – 75[[100 – 250[[0,4-0,2[
[75 – 100]	[250 - 6000]	[0,2-0]	

La grille de qualité pour les macro-algues formant des blooms est présentée dans le tableau 64 ci-dessous.

Tableau 64 : grille de qualité pour l'indicateur macro-algues formant des blooms

		TYPE européen	TYPES français concernés	MASSES D'EAU françaises concernées	VALEUR DE référence	RATIO de qualité écologique
Mer du Nord Manche	EC	NEA 1/26	Marée verte de type 1	FRGC01 FRGC03 FRGC05 FRGC06 FRGC09 FRGC10 FRGC12 FRGC20 FRGC26 FRGC29 FRGC34 FRGC35 FRGC36 FRGC48 FRGC49 FRGC53 FRHC02 FRHC03 FRHC04 FRHC09 FRHC12 FRHC 13 FRHC14 FRHC15 FRFC02		0,20-0,40-0,617- 0,825
Atlantique			Marée verte de type 2	FRGC13 FRGC28 FRGC32 FRGC38 FRGC42 FRGC44 FRGC45 FRGC46 FRGC47 FRGC50 FRGC51 FRHC07 FRHC08 FRHC10 FRHC11 FRFC01 et FRFC03		0,20-0,40-0,60-0,80
			Marée verte de type 3	FRGC07 FRGC11 FRGC16 FRGC39		0,20-0,40-0,60-0,80

1.1.4. Macro-algues : façade Méditerranée

Pour les masses d'eaux côtières de Méditerranée, l'indice adopté en France est l'indice CARLIT (CARtografia LIToral), qui intègre 3 paramètres :

- le linéaire côtier rocheux occupé par diverses communautés d'algues et d'invertébrés (moules) ;
- la sensibilité des communautés aux perturbations ;
- les caractéristiques géomorphologiques de la côte.

L'indice CARLIT a une valeur comprise entre 0 et 1. Il s'applique aux côtes rocheuses, dans la zone infra littorale supérieure (3,5 à 0,2 m de profondeur).

La grille de qualité pour les macro-algues est présentée dans le tableau 65 ci-dessous.

Tableau 65 : grille de qualité pour les macro-algues en Méditerranée

		TYPE européen	TYPES français concernés	MASSES D'EAU françaises concernées	VALEUR DE référence	RATIO de qualité écologique
Méditerranée E	EC	aucun	Tous	Toutes ME à côte rocheuse	Selon le type morphologique - Blocs détritiques naturels ou artificiels : référence = 12,2 - Côte basse naturelle ou artificielle : référence = 16,6 - Côte haute naturelle ou artificielle : référence = 15,3	0,25-0,40-0,60- 0,75

1.1.5. Angiospermes : façades Mer du Nord, Manche et Atlantique

Les angiospermes considérés sont les herbiers à Zostères : Zostera noltii et Zostera marina.

- L'indice français est composé de trois métriques : évolution de l'étendue spatiale de l'herbier (%) ;
- évolution de la densité de l'herbier (%) :
- évolution du nombre d'espèces (présence/ absence des 2 espèces).

Les références sont établies par masse d'eau.

Un EQR est établi pour chaque métrique ; la moyenne des 3 EQR constitue l'EQR de l'indice.

La grille de qualité pour les angiospermes est présentée dans le tableau 66 ci-dessous.

Tableau 66 : grille de qualité pour l'indicateur angiospermes - pour Mer du Nord, Manche, Atlantique

		TYPE européen	TYPES français concernés	MASSES D'EAU françaises concernées	VALEUR DE référence	RATIO de qualité écologique
Mer du				Toutes les masses d'eau		0.20, 0.40
Nord	EC	NEA 1/26	Tous	côtières des districts	Sans objet	0,20-0,40-
Manche	LC	112/1/20	1003	Escaut, Garonne, Loire,	Buils objec	0,645-0,80
Atlantique				Seine		

1.1.6. Angiospermes : façade Méditerranée

Pour les masses d'eau côtières de Méditerranée, les angiospermes considérés sont les herbiers à posidonie. L'indice français PREI (Posidonia oceanica Rapid Easy Index) a été défini ; il intègre les 5 paramètres suivants :

- densité des pieds (nombre de faisceaux/m²) à 15 m;
- surface foliaire par pied (cm²/faisceau) à 15 m;
- charge en épibiontes sur les feuilles (poids sec des épibiontes/poids sec des feuilles) à 15 m;
- profondeur de la limite inférieure de l'herbier (m) ;
- type de limite inférieure (franche, progressive, régressive).

L'indice varie entre 0 et 1.

Ces seuils ne sont pas définis par types de masses d'eau mais par écorégion.

La grille de qualité pour les angiospermes est présentée dans le tableau 67 ci-dessous.

Tableau 67 : grille de qualité pour l'indicateur angiospermes - Pour Méditerranée

		TYPE européen	TYPES français concernés	MASSES d'eau françaises concernées	LIMITES SUPERIEURE et inférieure du bon état	VALEUR DE référence	RATIO de qualité écologique
Méditerranée	EC	Aucun	C18 ; C20 C21 ; C24	Masses d'eau côtières de PACA	[0,55 - 0,775 [Densité = 675 Surface foliaire = 465 Charge en épib. = 0 Prof. limite inf. = 37	0,1-0,325-
		Aucun	C18 ; C23 ; C24 ; C26	Masses d'eau côtières de Corse et côte rocheuse	[0,55 - 0,775 [Densité = 483 Surface foliaire = 546 Charge en épib. = 0 Prof. limite inf. = 41	0,55-0,775

1.1.7. Cas des départements d'outre-mer

Les connaissances actuelles ne permettent pas de fixer des indices et valeurs seuils fiables pour les éléments de qualité biologiques dans les départements d'outre-mer. Des indicateurs spécifiques adaptés à l'écologie de ces milieux sont en cours de développement. Certaines grilles de qualité ont été définies au niveau local et sont en cours de validation au niveau national. Dans cette attente, le préfet coordonnateur de bassin évalue l'état écologique des masses d'eau de surface, au regard des définitions normatives de l'annexe 1 au présent arrêté, en s'appuyant sur les connaissances actuelles, des indicateurs provisoires et le dire d'expert.

1.2. Éléments physico-chimiques généraux

1.2.1. Oxygène dissous

Pour l'oxygène dissous, la métrique retenue est le percentile 10. Elle se calcule sur des données mensuelles, acquises en période estivale, au fond, sur 6 ans.

La grille de qualité pour l'oxygène dissous est présentée dans le tableau 68 ci-dessous.

Tableau 68 : grille de qualité pour l'indicateur oxygène dissous

TYPE européen	TYPES français concernés	MASSES D'EAU françaises concernées	GRILLE Oxygène dissous (mg/L)
Sans objet	Tous types	Toutes masses d'eau côtières	Très Bon : > 5 Bon : 5 - 3 Inférieur à Bon : \leq 3

1.2.2. Transparence

La métrique retenue pour l'indicateur transparence est le percentile 90 des valeurs mensuelles de turbidité mesurées en sub-surface, de mars à octobre, sur 6 ans.

La grille de qualité pour la transparence est présentée dans le tableau 69 ci-dessous.

Tableau 69 : grille de qualité pour l'indicateur transparence

TYPE européen	TYPES français concernés	MASSES D'EAU françaises concernée s	I IIIrniaite (RINIII)	Commentaires
Sans objet	Tous types	Toutes masses d'eau côtières de l'Ecotype 1	Très Bon : < 7 Bon : 7-14 Inférieur à Bon : ≥ 14	Voir en annexe 6-bis la liste des ME par écotype
Sans objet	Tous types	Toutes masses d'eau côtières de l'Ecotype 3	Très Bon : < 40 Bon : 40-60 Inférieur à Bon : ≥ 60	Voir en annexe 6-bis la liste des ME par écotype

1.2.3. Température

La métrique retenue pour l'indicateur température est le pourcentage de valeurs mensuelles, mesurées en sub-surface toute l'année pendant 6 ans, situées hors d'une 'enveloppe de référence.

La grille de qualité pour la température est présentée dans le tableau 70 ci-dessous.

Tableau 70 : grille de qualité pour l'indicateur température

TYPE europée n	TYPES français concernés	MASSES D'EAU françaises concernées	GRILLE Température (%)	Commentaires
Sans objet	Tous	Ecotypes 1 à 5	Bon : [0-5[Inférieur à Bon : ≥5	Voir en annexe 6-bis la liste des ME par écotype

1.2.4. Nutriments

La métrique retenue pour l'indicateur nutriment est la concentration normalisée à 33 de salinité des valeurs mensuelles de NID mesurées en surface sur 6 ans

Tableau 71 : grille de qualité pour l'indicateur azote inorganique dissous pour la façade Manche- Mer du Nord - Atlantique:

	TYPE européen	TYPES français concernés	MASSES D'EAU françaises concernée s	
Manche Atlantique	NEA 1/26a	Tous	Toutes	Très Bon :< 20 Bon :]20 – 29] ou si [>29 et si EQR biomasse > « bon état »] Inférieur à Bon : ≥à 29 et EQR biomasse < « bon état »
Mer du Nord	NEA 1/26b	Tous	Toutes	Très Bon :< 20 Bon :]20 – 33] ou si [>33 et si EQR biomasse > « bon état »] Inférieur à Bon : ≥à 33 et EQR biomasse < « bon état »

2. <u>Indicateurs, valeurs seuils et modalités de calcul de l'état des éléments de qualité de l'état écologique des eaux de transition</u>

2.1. Éléments biologiques

2.1.1. Phytoplancton

Cet élément de qualité est non pertinent dans les estuaires turbides.

2.1.1.1. Chlorophylle a

Comme en eaux côtières, la métrique définie est le percentile 90 des valeurs de chlorophylle a, calculé sur des données mensuelles acquises à des périodes variables suivant les masses d'eau, et sur 6 ans.

La grille de qualité pour le paramètre chlorophylle a est présentée dans le tableau 72 ci-dessous.

*Tableau 72 : grille de qualité pour le paramètre chlorophylle a - p*our toutes les façades : grille susceptible de révision (intercalibration européenne non achevée)

		TYPE européen (1)	TYPES français concernés	MASSES D'EAU françaises concernées	LIMITES supérieure et inférieure du bon état (µg/l)	VALEUR de référence (µg/l)	RATIO de qualité écologique
Manche Atlantique	ET	NEA 11		Toutes les masses d'eaux côtières des districts Garonne, Loire, Seine] 5 -8,39]	3,33	0,08-0,17- 0,397-0,67
Mer du Nord	ЕТ	NEA 11		Toutes les masses d'eau côtières du district Escaut] 10 – 16,8]	6,67	0,15-0,30- 0,397-0,67
Méditerranée	ET	aucun	Masses d'eau de type Delta (type 12)	Toutes les ME du type 12, sauf exception argumentée] 5 – 10]	3,33	0,08- 0,17- 0,33-0,67
riculterrance	E1	aucun	Masses d'eau de type lagunaire (type 10)	Toutes les ME du type 10 sauf exception argumentée]5-7]	3,33	0,17-0,33- 0,48-0,67

2.1.1.2. Blooms/abondance

Estuaires (MET des façades Mer du Nord, Manche et Atlantique et MET de type Delta en Méditerranée)

La métrique est définie comme le pourcentage d'échantillons pour lequel un taxon dépasse une valeur seuil. Deux valeurs seuils sont définies :

- 100 000 cellules pour les espèces de taille : \geq 20 µm;
- 250 000 cellules pour les espèces de taille : $5\mu m \le x < 20 \mu m$.

La métrique se calcule pour l'ensemble des deux classes de taille, sur des données mensuelles, acquises toute l'année et durant six ans.

La grille de qualité pour le paramètre blooms/abondance est présentée dans le tableau 73 cidessous.

Lagunes méditerranéennes

Deux métriques sont définies :

- Densité de nano-phytoplancton (> 3 μ m) (percentile 90 sur 6 ans du nombre de cellules/L > 3 μ M)
- Densité de pico-phytoplancton (< 3 $\mu M)$ (percentile 90 sur 6 ans du nombre de cellules/L < 3 $\mu M)$

<u>Pour chaque métrique un EQR est calculé ; l'EQR le plus bas des deux est retenu comme EQR pour l'indice d'abondance final.</u>

La grille de qualité pour le paramètre blooms est présentée dans le tableau 73 ci-dessous.

Tableau 73 : grille de qualité pour le paramètre bloom-abondance - pour toutes les façades : grille susceptible de révision (intercalibration européenne non achevée)

		TYPE europée n	TYPES français concern és	MASSES D'EAU françaises concernées	LIMITES supérieure et inférieure du bon état	VALEUR de référence	RATIO DE qualité écologique
Mer du Nord Manche Atlantique	ET	NEA 11	Tous	Toutes les masses du type, sauf les ME turbides	(% d'échantillons avec dépassement	16,7%	0,19-0,24-
	ET	aucun	Type 12	Toutes les ME du type 12, sauf exception argumentée	d'un seuil de bloom)] 20 – 39]	10,7 /0	0,43-0,84
Méditerranée	ET	aucun	Type 10	Toutes sauf exception argumentée	Picoplancton: [20 - 50] Nanoplancton: [4 - 10]	Picoplancton : 15*10 ⁶ cell/L Nanoplancto n: 3*10 ⁶ cell/L	0,03-0,15- 0,30-0,75

2.1.1.3. Indicateur phytoplancton

La grille de qualité résultante (moyenne des EQR biomasse et abondance) est indiquée dans le tableau 74 ci-dessous.

Tableau 74 : grille de qualité pour l'indicateur phytoplancton - pour toutes les façades : grille susceptible de révision (intercalibration européenne non achevée)

		TYPE européen	TYPES français concernés	MASSES D'EAU françaises concernées	LIMITES supérieure et inférieure du bon état (µg/l)	VALEUR de référence	RATIO de qualité écologique
Manche Atlantique	ET	NEA 11	Tous	Toutes les ME	Sans objet	Sans objet	0,13-0,2-0,413- 0,75
Mer du Nord	ET	NEA 11	Tous	Toutes les ME	Sans objet	Sans objet	0,17-0,27- 0,413-0,75
Méditerranée	ET	aucun	Type 12 (delta)	Toutes les ME, sauf exception argumentée	Sans objet	Sans objet	0,13- 0,20- 0,38-0,75
		aucun	Type 10 (lagune)	Toutes les ME sauf exception argumentée	Sans objet	Sans objet	0,10-0,24-0,39- 0,71

2.1.2. Invertébrés benthiques

Estuaires (MET des façades Mer du Nord, Manche et Atlantique)

Un indicateur spécifique est en cours de développement.

Lagunes méditerranéennes

L'indice retenu est l'indice M-AMBI, qui intègre les trois paramètres requis par la DCE :

- AMBI : indice qui s'appuie sur la sensibilité/tolérance des espèces à un enrichissement du milieu ;
- la richesse spécifique ;
- la diversité (indice de Shannon-Weaver).

Le M-AMBI varie entre 0 et 1.

La grille de qualité pour les invertébrés benthiques est présentée dans le tableau 75 ci-dessous.

Tableau 75 : grille de qualité pour l'indicateur invertébrés benthiques - grille susceptible de révision (intercalibration européenne non achevée)

	TYPE européen	TYPES français concernés	MASSES D'EAU françaises concernées	VALEUR DE référence	RATIO de qualité écologique
Méditerranée E'	Γ aucun	Type 10 (lagune)	Toutes les masses d'eau du type, sauf lagunes oligo et mésohalines)	AMBI = 0,6 Diversité = 4,23 Richesse spécifique = 46	0,2-0,4-0,63-0,84

2.1.3. Macro-algues

Estuaires (MET des façades Mer du Nord, Manche et Atlantique)

Pour les estuaires de Mer du Nord, la Manche et l'Atlantique, on distingue

- les macro-algues intertidales substrat dur,

La grille de qualité pour les macro-algues intertidales de substrat dur est la suivante :

Tableau 76 : grille de qualité pour l'indicateur macroalgues intertidales de substrat dur

	TYPE européen	TYPES français concernés	MASSES D'EAU françaises concernées	VALEUR DE référence	RATIO de qualité écologique
Manche – Mer du Nord - Atlantique	NEA11	Tous	Toutes		0,2-0,4-0,65-

- les macro-algues formant des blooms opportunistes pour lesquelles les mêmes types de marées vertes qu'en eaux côtières peuvent avoir lieu (excepté pour les marées vertes de type 2 qui s'observent exclusivement en eaux côtières). Les mêmes indicateurs que ceux décrits en eaux côtières pour les marées vertes de type 1 et de type 3 s'appliquent (voir paragraphe 1.1.3.3). La grille de qualité pour les macro-algues formant des blooms est présentée dans le tableau 77 ci-dessous.

Tableau 77 : grille de qualité pour l'indicateur macro-algues formant des blooms

		TYPE européen	TYPES français concernés	MASSES D'EAU françaises concernées	VALEUR DE référence	RATIO de qualité écologique
			Marée verte de type 1	FRHT06		0,20-0,40- 0,617-0,825
Mer du Nord Manche Atlantique	ET	NEA11	Marée verte de type 3	FRGT02 FRGT03 FRGT04 FRGT05 FRGT06 FRGT07 FRGT08 FRGT09 FRGT10 FRGT11 FRGT12 FRGT14 FRGT15 FRGT16 FRGT17 FRGT18 FRGT19 FRGT20 FRGT21 FRGT22 FRGT23		0,20-0,40- 0,60-0,80
				FRGT24 FRGT25 FRGT27		

Lagunes méditerranéennes

La France dispose d'un outil global qui inclut les angiospermes et les macro-algues (cf. partie suivante : angiospermes).

2.1.4. Angiospermes

Estuaires (MET des façades Mer du Nord, Manche et Atlantique)

Les angiospermes considérés sont les herbiers à Zostères : *Zostera noltii et Zostera marina*. L'indice français est composé de trois métriques :

- évolution de l'étendue spatiale de l'herbier (%)
- évolution de la densité de l'herbier (%)
- évolution du nombre d'espèces (présence/ absence des 2 espèces).

Les références sont établies par masse d'eau.

Un EQR est établi pour chaque métrique ; la moyenne des 3 EQR constitue l'EQR de l'indice. La grille de qualité pour les angiospermes est présentée dans le tableau 78 ci-dessous.

Tableau 78 : grille de qualité pour l'indicateur angiospermes - grille susceptible de révision (intercalibration européenne non achevée)

		TYPE européen	TYPES français concernés	MASSES D'EAU françaises concernées	VALEUR DE référence	RATIO de qualité écologique
Mer du Nord Manche Atlantique	ET	NEA 11	Tous	Toutes les masses d'eau de transition des districts Escaut, Garonne, Loire, Seine	Sans objet	0,20-0,40- 0,645-0,80

Lagunes méditerranéennes

La France dispose d'un outil global qui inclut les angiospermes et les macroalgues, l'indicateur EXCLAME (EXamination tool for Coastal Lagoon Macrophyte Ecological status). Cet outil a été établi pour la pression d'eutrophisation, qui est la principale pression anthropique pesant sur les lagunes. L'indicateur EXCLAME décrit ci-dessous est applicable aux lagunes polyeuhalines.

Trois métriques sont combinées :

- recouvrement du fond par les macrophytes, ou recouvrement total RT (%)
- recouvrement du fond par les espèces de référence, ou recouvrement relatif RR (%),
- richesse spécifique moyenne RS (nombre moyen d'espèces recensées) qui discrimine médiocre/mauvais.

L'indice ne peut être utilisé que lorsque le recouvrement global des macrovégétaux est supérieur à 5 %.

Valeurs de référence

RR = 100%

RT = 100%

Dans un premier temps, le classement se réalise en utilisant la première métrique (RT) pour définir l'EQR abondance d'une part, et en combinant les deux autres métriques (RR et RS) entre elles pour obtenir l'EQR composition d'autre part, selon le tableau 79 ci-dessous.

Tableau 79 : identification des classes d'état des EQR des métriques de l'indice EXCLAME

Indice (Composition	EQRc Composition	Classe
Métrique 1. RS	Métrique 2. RR %		
	[100 - 75]	[1-0.8]	Très Bon
≥ 3]75 – 50]]0,8-0,6]	Bon
_ = 0]50 - 5]]0,6 - 0,4]	Moyen
]5 - 0]]0,4 - 0,2]	Médiocre
< 3	0	0,1	
≥ 3 ou < 3	Non défini (cas où RT < 5 %)	Non défini	Mauvais

Indice Abondance	EQRA Abondance	Classe
Métrique 3. RT %		
[100 – 75]	[1-0,8]	Très Bon
]75 – 50]]0,8 - 0,6]	Bon
]50 – 25]]0,6 - 0,4]	Moyen
]25 – 5]]0,4 - 0,2]	Médiocre
]5 – 0]]0,2 – 0]	Mauvais

L'indicateur final (EQRMAC) résulte de la combinaison de l'EQRC de composition et de l'EQRA d'abondance. Il est basé sur le principe suivant : c'est la présence d'espèces de référence, donc la composition, qui va définir essentiellement la qualité de la masse d'eau pour les macrophytes. Cette qualité sera d'autant plus fortement déclassée que l'abondance n'est pas satisfaisante (à partir de EQRA < 0,6 (recouvrement total <50%), soit à partir de la classe de qualité « moyen »). Pour des EQRA supérieurs ou égaux à 0.6 (classe de qualité très bon et bon), la classe de qualité macrophytes est égale à celle de la composition (EQRMAC = EQRC). Pour des EQRA inférieurs à 0,6, il y a un effet de déclassement progressif et qui s'accentue (fonction polynomiale) au fur et à mesure que l'on s'écarte du seuil bon-moyen de l'EQR A.

La grille de qualité pour les macrophytes des lagunes poly-euhalines est présentée dans le tableau 80 ci-dessous.

Tableau 80 : grille de qualité pour l'indicateur macrophytes (angiospermes et macro-algues)

		TYPE européen	TYPES français concernés	MASSES D'EAU françaises concernées	VALEUR DE référence	RATIO de qualité écologique
Méditerranée	ЕТ	aucun	Type 10 (lagune)	Toutes les masses d'eau du type, sauf lagunes oligo et mésohalines)	RR = 100% RT = 100	0,2-0,4-0,6- 0,80

Pour les lagunes oligo-mésohalines, l'indicateur macrophytes est basé sur la valeur indicatrice des espèces réparties en 5 groupes le long du gradient d'eutrophisation. Cet indicateur comprend 3 métriques :

- le recouvrement cumulé des espèces des groupes 1, 2 et 3 (« RV (G1+2+3) »), correspondant à des niveaux faibles à moyen d'eutrophisation et celui des espèces des groupes 4 et 5 (« RV (G4+5) ») correspondant à des niveaux forts à très forts,
- le recouvrement total de *Stuckenia pectinata* (« RV *S. pectinata* ») qui devient indicateur de stress lorsque son recouvrement dépasse 65%,
- les résidus de la corrélation reliant la turbidité à la biomasse de chlorophylle-a (\log_{10} Turbidité= a+b * \log_{10} Chl-a) qui expriment la part non trophique de la turbidité (« Résidus TUR »).

Valeurs de référence :

- -RV (G1+2+3) > 80%, et RV (G4+5) < 30%;
- Recouvrement de S. pectinata <65%;
- Résidus TUR > 0.2.

Les trois métriques sont combinées pour produire l'indicateur macrophytes des lagunes oligomésohalines :

L'état est jugé très bon lorsque :

- le recouvrement cumulé des macrophytes des groupes 1 à 3 est supérieur ou égal à 80% et,
- le recouvrement d'une seule espèce (Stuckenia pectinata) est inférieur ou égal à 65% et,
- le recouvrement cumulé des espèces des groupes 4 et 5 est inférieur ou égal à 30%.

L'état est bon avec une large gamme de recouvrement cumulé des espèces des groupes 1 à 3 (>5%) en fonction :

- du recouvrement de Stuckenia pectinata (<65%),
- du recouvrement des espèces des groupes 4 et $5 \le 30\%$ sauf si G1+2+3 $\ge 80\%$),
- des résidus de la régression \log_{10} Turbidité= a+b x \log_{10} Chl-a ($\geq 0,2$) si le recouvrement total des G1+2+3 compris entre 5 et 20%.

L'indicateur est non applicable (NA) lorsque le recouvrement cumulé des macrophytes des groupes 1 à 3 est inférieur à 5%

La grille de qualité pour les macrophytes des lagunes oligo-mésohalines est présentée dans le tableau 81 ci-dessous.

Tableau 81 : grille de qualité pour l'indicateur macrophytes (angiospermes et macroalgues) des lagunes oligomésohalines :

Métrique RV G1+2+3	Turbidité	Résidus TUR	Métrique RV S. pectinata	Métrique RV (G4+5)	Classe
			FO (50/1	[0-30%]	Très bon
F1000/ 000/1			[0-65%]]30%-100%]	Bon
[100%-80%]	-	-	1650/ 1000/1	[0-30%]	Moyen
]65%-100%]]30%-100%]	Médiocre
			[0-65%]	[0-30%]	Bon
[80%-50%]	-	-	[0-03 /0]]30%-100%]	Moyen
[60/0-30/0]			[65%-100%]	[0-30%]	Moyen
]03/0-100/0]]30%-100%]	Médiocre
[50%-20%]				[0-30%]	Bon
]30 /0-20 /0]	_	_	_]30%-100%]	Moyen
		≥0,2	_	[0-30%]	Bon
	≥15 NTU	≥0,2	_]30%-100%]	Moyen
1200/ 50/1	≥13 N10	<0,2		[0-30%]	Moyen
]20%-5%]		\(\) 0,2	_]30%-100%]	Médiocre
	<15 NTU			[0-30%]	Médiocre
	<13 N1U	_	_]30%-100%]	Mauvais
]5%-0]	-	-	_	-	NA

2.1.5. Poissons

Estuaires (MET des façades Mer du Nord, Manche et Atlantique)

L'indicateur ELFI comprend les métriques suivantes :

- Densité de migrateurs DDIA (Log_densité / 1000 m²)
- Densité de juvéniles marins DMJ (Log_densité / 1000 m²)
- Densité de poissons d'eau douce dans les zones oligohalines DFW (Log_densité / 1000 m²)
- Densité de poissons benthiques DB (Log_densité / 1000 m²)
- Densité totale de poissons DT (Log_densité / 1000 m²)
- Densité de poissons résidents DER (Log_densité / 1000 m²)
- Richesse taxonomique normalisée RT_lnS (Nb de taxons / Logarithme népérien de la surface échantillonnée)

L'indicateur final est constitué de l'assemblage des métriques. Les scores obtenus pour chaque saison et classe de salinité ont d'abord été compilés afin d'obtenir une seule note par système, pour la métrique considérée.

ELFI = Σ n (somme des scores observés pour la métrique n / somme des scores maxi pour la métrique n)

(nombre de métriques, en général = 7)

Dans le cas où une masse d'eau n'aurait pas de classe de salinité oligohaline, la métrique 3 concernant les espèces d'eau douces n'est pas calculée et le dénominateur de l'équation a la valeur 6.

L'indicateur est d'abord calculé pour chaque année de surveillance ; leur moyenne constitue la valeur finale pour la masse d'eau considérée.

La grille de qualité pour les poissons est présentée dans le tableau 82 ci-dessous.

		TYPE européen	TYPES français concernés	MASSES D'EAU françaises concernées	VALEUR DE référence	RATIO de qualité écologique
Mer du				Toutes les masses d'eau		
Nord	ЕТ	NEA 11	Tour	de transition des districts		0,225-0,45-
Manche	СI	NEA II	Tous	Escaut, Garonne, Loire,		0,675-0,91
Atlantique				Seine		

2.1.6. Cas des départements d'outre-mer

Les connaissances actuelles ne permettent pas de fixer des indices et valeurs seuils fiables pour les éléments de qualité biologiques dans les départements d'outre-mer. Des indicateurs spécifiques adaptés à l'écologie de ces milieux sont en cours de développement. Dans cette attente, le préfet coordonnateur de bassin évalue l'état écologique des masses d'eau de surface, au regard des définitions normatives de l'Annexe 1 au présent arrêté, en s'appuyant sur les connaissances actuelles, des indicateurs provisoires et le dire d'expert.

2.2. Éléments physico-chimiques généraux

2.2.1. Oxygène dissous

Les principes définis à la partie 1.2.1 de la présente annexe pour les eaux côtières sont applicables pour les eaux de transition des façades Mer du Nord, Manche et Atlantique, en l'attente de la définition d'une nouvelle stratégie de surveillance.

2.2.2. Nutriments

Façade Méditerranée:

Dans les eaux de transition de Méditerranée de type lagune (type 10), les grilles de qualité pour les nutriments figurant dans le tableau 83 ci-dessous sont utilisées, en l'attente d'une consolidation ultérieure pour les lagunes oligo-mésohalines.

Les formes prises en compte sont l'azote (total et minéral dissous total) et le phosphore (total et minéral dissous total).

La métrique utilisée est le percentile 90 des données estivales sur 6 ans.

Tableau 83 : grille de qualité pour les nutriments dans les eaux de transition méditerranéenne de type lagune (type 10)

TYPE européen	TYPES français concernés	MASSES D'EAU françaises concernées	Paramètre	GRILLE (µmol/l)
			NID	Très Bon : ≤ 2 Bon :] 2 - 6] Inférieur à Bon : >6
Sans objet	Type 10	Lagunes poly-	N Total	Très Bon : ≤ 50 Bon :] 50 - 75] Inférieur à Bon : >75
Sans Objet	Type 10	euhalines	PO4	Très Bon : ≤ 0,3 Bon :] 0,3- 1] Inférieur à Bon : >1
			P Total	Très Bon : ≤ 2 Bon :] 2- 3] Inférieur à Bon : >3

<u>Façade Manche - Mer du Nord – Atlantique :</u>

La métrique retenue pour l'indicateur nutriment est la concentration normalisée à 33 de salinité des valeurs mensuelles de NID mesurées en surface sur 6 ans.

Tableau 84 : grille de qualité pour l'indicateur azote inorganique dissous pour la façade Manche- Mer du Nord - Atlantique:

	TYPE europée n	TYPES français concernés	MASSE S D'EAU française s concerné es	GRILLE NID normalisé à 33 de salinité (µmol/L)
Manche Atlantiqu e	NEA 11	Tous	Toutes	Très Bon :< 20 Bon :]20 – 29] ou si [>29 et si EQR biomasse > « bon état »] Inférieur à Bon : ≥à 29 et EQR biomasse < « bon état »
Mer du Nord	NEA 11	Tous	Toutes	Très Bon :< 20 Bon :]20 – 33] ou si [>33 et si EQR biomasse > « bon état »] Inférieur à Bon : ≥à 33 et EQR biomasse < « bon état »

ANNEXE 6 bis

RATTACHEMENT DES MASSES D'EAU A UN ECOTYPE TEMPERATURE ET TURBIDITE

Température

La métrique associée à l'élément de qualité température en eaux côtières est le pourcentage de mesures mensuelles hors d'une enveloppe de référence. Cinq enveloppes de référence ont été établies sur la base des données disponibles en 2007 sur l'ensemble des masses d'eau côtières. Le tableau 85 ci-dessous indique à quelle enveloppe de référence (écotype) est rattachée chaque masse d'eau concernée par le contrôle de surveillance.

Tableau 85 : écotype « température » en fonction de la masse d'eau

Code masse	Libellé masse eau	Ecotype
d'eau		température
FRAC01	Frontière belge - Malo	5
FRAC02	Malo - Gris-Nez	5
FRAC03	Gris-Nez - Slack	1
FRAC05	La Warenne - Ault	1
FRHC18	Pays de Caux (nord)	5
FRHC16	Le Havre - Antifer	1
FRHC15	Côte Fleurie	1
FRHC14	Baie de Caen	1
FRHC13	Côte de Nacre (est)	1
FRHC12	Côte de Nacre (ouest)	1
FRHC11	Côte du Bessin	1
FRHC10	Baie des Veys	1
FRHC09	Anse de Saint-Vaast-la-Hougue	1
FRHC08	Barfleur	5
FRHC07	Cap Levy - Gatteville	5
FRHC060	Rade de Cherbourg	5
FRHC04	Cap de Carteret - Cap de la Hague	5
FRHC03	Ouest Cotentin	1
FRHC01	Archipel Chausey	5
FRHC02	Baie du Mont-Saint-Michel (centre baie)	1
FRGC01	Baie du Mont-Saint-Michel	1
FRGC03	Rance - Fresnaye	1
FRGC05	Fond Baie de Saint-Brieuc	1
FRGC07	Paimpol - Perros-Guirec	1
FRGC08	Perros-Guirec (large)	5
FRGC10	Baie de Lannion	1
FRGC11	Baie de Morlaix	1
FRGC18	Iroise (large)	5
FRGC16	Rade de Brest	1
FRGC20	Baie de Douarnenez	1
FRGC26	Baie d'Audierne	1
FRGC28	Concarneau (large)	1
FRGC34	Lorient - Groix	1

FRGC35	Baie d'Etel	1
FRGC42	Belle-Ile	1
FRGC36	Baie de Quiberon	1
FRGC39	Golfe du Morbihan	4
FRGC45	Baie de Vilaine (large)	1
FRGC44	Baie de Vilaine (côte)	4
FRGC46	Loire (large)	1
FRGC48	Baie de Bourgneuf	4
FRGC47	Ile d'Yeu	1
FRGC50	Nord Sables-d'Olonne	4
FRGC53	Pertuis Breton	4
FRFC01	Côte Nord-Est de l'Île d'Oléron	4
FRFC02	Pertuis Charentais	4
FRFC07	Arcachon aval	2
FRFC06	Arcachon amont	4
FRFC08	Côte Landaise	2
FRFC09	Lac d'Hossegor	2
FRFC11	Côte Basque	2
FRDC01	Frontière espagnole - Racou Plage	2
FRDC02a	Racou Plage - Embouchure de l'Aude	2
FRDC02c	Cap d'Agde	2
FRDC02f	Frontignan - Pointe de l'Espiguette	2
FRDC04	Golfe de Fos	2
FRDC05	Côte Bleue	2
FRDC06b	Pointe d'Endoume - Cap Croisette et îles du Frioul	2
FRDC07a	iles de Marseille hors Frioul	2
FRDC07b	Cap croisette - Bec de l'Aigle	2
FRDC07e	Ilot Pierreplane - Pointe du Gaou	2
FRDC07g	Cap Cepet - Cap de Carqueiranne	2
FRDC07h	Iles du Soleil	2
FRDC08a	Pointe des Issambres - Ouest Fréjus	3
FRDC08d	Ouest Fréjus - Pointe de la Galère	3
FRDC09a	Cap d'Antibes - Sud port Antibes	3
FRDC09b	Port Antibes - Port de commerce de Nice	3
FRDC09d	Cap d'Antibes - Cap Ferrat	3
FRDC10c	Monte Carlo- Frontière italienne	3
FREC01ab	Pointe Palazzu - Sud Nonza	3
FREC02ab	Cap Est de la Corse	3
FREC02d	Plaine Orientale	3
FREC03ad	Littoral Sud Est de la Corse	3
FREC03eg	Littoral Sud Ouest de la Corse	3
FREC04ac	Pointe Senetosa - Pointe Palazzu	3

Turbidité

La métrique associée à l'élément de qualité turbidité en eaux côtières est le percentile 90 des valeurs mensuelles, de mars à octobre (écotype 1 et 3) sur 6 ans (unité FNU). La répartition en écotype de chaque masse d'eau concernée par le contrôle de surveillance est précisée dans le tableau 86 ci-dessous :

Tableau 86 : écotype « transparence » en fonction de la masse d'eau

FRAC02 Jetée de Malo à Est cap Griz nez 3 FRAC03 Cap Griz nez à Slack 3 FRAC05 La Warenne à Ault 3 FRHC18 Pays de Caux Nord 3 FRHC16 Le Havre - Antifer 3 FRHC15 Côte Fleurie 3 FRHC16 Baie de Caen 3 FRHC17 Côte de Nacre Est 3 FRHC18 Côte de Nacre Ouest 3 FRHC19 Côte de Nacre Ouest 3 FRHC11 Côte de Nacre Ouest 3 FRHC10 Baie des Veys 3 FRHC10 Baie des Veys 3 FRHC09 Anse de Saint-Vaast la Hougue 3 FRHC09 Anse de Saint-Vaast la Hougue 1 FRHC08 Barfleur 1 FRHC09 Anse de Saint-Vaast la Hougue 1 FRHC00 Rade de Cherbourg 1 FRHC01 Cap de Carteret - Cap de la Hague 1 FRHC02 Baie du Mont-Saint-Michel: centre baie 3 FRGC01	Code masse eau	Libellé masse eau	Groupe ME transparence
FRAC03 Cap Griz nez à Slack 3 FRAC05 La Warenne à Ault 3 FRHC18 Pays de Caux Nord 3 FRHC16 Le Havre - Antifer 3 FRHC15 Côte Fleurie 3 FRHC14 Baie de Caen 3 FRHC13 Côte de Nacre Est 3 FRHC12 Côte de Nacre Ouest 3 FRHC11 Côte du Bessin 3 FRHC10 Baie des Veys 3 FRHC10 Baie des Veys 3 FRHC09 Anse de Saint-Vaast la Hougue 3 FRHC09 Anse de Saint-Vaast la Hougue 3 FRHC06 Barfleur 1 FRHC07 Cap Levy - Gatteville 1 FRHC08 Barfleur 1 FRHC001 Cap de Carteret - Cap de la Hague 1 FRHC04 Cap de Carteret - Cap de la Hague 1 FRHC03 Ouest Cotentin 3 FRHC04 Cap de Carteret - Cap de la Hague 1 FRHC03 Ouest Cotentin <td>FRAC01</td> <td>Frontière belge à jetée de Malo</td> <td>3</td>	FRAC01	Frontière belge à jetée de Malo	3
FRAC05 La Warenne à Ault 3 FRHC18 Pays de Caux Nord 3 FRHC16 Le Havre - Antifer 3 FRHC15 Côte Fleurie 3 FRHC14 Baie de Caen 3 FRHC13 Côte de Nacre Est 3 FRHC11 Côte de Nacre Ouest 3 FRHC11 Côte du Bessin 3 FRHC10 Baie des Veys 3 FRHC10 Baie des Veys 3 FRHC09 Anse de Saint-Vaast la Hougue 3 FRHC08 Barfleur 1 FRHC08 Barfleur 1 FRHC07 Cap Levy - Gatteville 1 FRHC08 Rade de Cherbourg 1 FRHC001 Rade de Cherbourg 1 FRHC004 Cap de Carteret - Cap de la Hague 1 FRHC010 Archipel Chausey 3 FRHC01 Archipel Chausey 3 FRGC01 Baie du Mont-Saint-Michel: centre baie 3 FRGC03 Rance - Fresnaye 1	FRAC02	Jetée de Malo à Est cap Griz nez	3
FRHC18 Pays de Caux Nord 3 FRHC16 Le Havre - Antifer 3 FRHC15 Côte Fleurie 3 FRHC14 Baie de Caen 3 FRHC13 Côte de Nacre Est 3 FRHC11 Côte du Bessin 3 FRHC10 Baie des Veys 3 FRHC10 Baie des Veys 3 FRHC09 Anse de Saint-Vaast la Hougue 3 FRHC09 Anse de Saint-Vaast la Hougue 1 FRHC08 Barfleur 1 FRHC09 Cap Levy - Gatteville 1 FRHC00 Rade de Cherbourg 1 FRHC01 Rade de Cherbourg 1 FRHC03 Ouest Cotentin 3 FRHC01 Archipel Chausey 3 FRHC02 Baie du Mont-Saint-Michel: centre baie 3 FRGC01 Baie du Mont-Saint-Michel: centre baie 3 FRGC03 Rance - Fresnaye 1 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC05 Fond Baie de Sa	FRAC03	Cap Griz nez à Slack	3
FRHC16 Le Havre - Antifer 3 FRHC15 Côte Fleurie 3 FRHC14 Baie de Caen 3 FRHC13 Côte de Nacre Est 3 FRHC12 Côte de Nacre Ouest 3 FRHC11 Côte du Bessin 3 FRHC10 Baie des Veys 3 FRHC010 Baie des Veys 3 FRHC09 Anse de Saint-Vaast la Hougue 3 FRHC09 Anse de Saint-Vaast la Hougue 1 FRHC08 Barfleur 1 FRHC09 Cap Levy - Gatteville 1 FRHC00 Rade de Cherbourg 1 FRHC01 Rade de Cherbourg 1 FRHC02 Rade de Cherbourg 1 FRHC03 Ouest Cotentin 3 FRHC01 Archipel Chausey 3 FRHC02 Baie du Mont-Saint-Michel: centre baie 3 FRGC01 Baie du Mont-Saint-Michel 3 FRGC03 Rance - Fresnaye 1 FRGC05 Fond Baie de Saint-Brieue	FRAC05	La Warenne à Ault	3
FRHC16 Le Havre - Antifer 3 FRHC15 Côte Fleurie 3 FRHC14 Baie de Caen 3 FRHC13 Côte de Nacre Est 3 FRHC12 Côte du Bessin 3 FRHC11 Côte du Bessin 3 FRHC10 Baie des Veys 3 FRHC10 Baie des Veys 3 FRHC09 Anse de Saint-Vaast la Hougue 3 FRHC09 Anse de Saint-Vaast la Hougue 1 FRHC08 Barfleur 1 FRHC09 Cap Levy - Gatteville 1 FRHC01 Rade de Cherbourg 1 FRHC02 Rade de Carteret - Cap de la Hague 1 FRHC03 Ouest Cotentin 3 FRHC01 Archipel Chausey 3 FRHC02 Baie du Mont-Saint-Michel: centre baie 3 FRGC01 Baie du Mont-Saint-Michel: centre baie 3 FRGC03 Rance - Fresnaye 1 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC05 F	FRHC18	Pays de Caux Nord	3
FRHC14 Baie de Caen 3 FRHC13 Côte de Nacre Est 3 FRHC12 Côte de Nacre Ouest 3 FRHC11 Côte du Bessin 3 FRHC10 Baie des Veys 3 FRHC010 Baie de Saint-Vaast la Hougue 3 FRHC09 Anse de Saint-Vaast la Hougue 3 FRHC08 Barfleur 1 FRHC07 Cap Levy - Gatteville 1 FRHC06 Rade de Cherbourg 1 FRHC60 Rade de Cherbourg 1 FRHC04 Cap de Carteret - Cap de la Hague 1 FRHC03 Ouest Cotentin 3 FRHC03 Ouest Cotentin 3 FRHC01 Archipel Chausey 3 FRHC02 Baie du Mont-Saint-Michel: centre baie 3 FRGC01 Baie du Mont-Saint-Michel: centre baie 3 FRGC03 Rance - Fresnaye 1 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC06 Faine de Saint-Brieuc 3 FRGC07	FRHC16		3
FRHC13 Côte de Nacre Est 3 FRHC12 Côte de Nacre Ouest 3 FRHC11 Côte du Bessin 3 FRHC10 Baie des Veys 3 FRHC09 Anse de Saint-Vaast la Hougue 3 FRHC08 Barfleur 1 FRHC08 Barfleur 1 FRHC07 Cap Levy - Gatteville 1 FRHC08 Rade de Cherbourg 1 FRHC60 Rade de Cherbourg 1 FRHC04 Cap de Carteret - Cap de la Hague 1 FRHC03 Ouest Cotentin 3 FRHC01 Archipel Chausey 3 FRHC02 Baie du Mont-Saint-Michel: centre baie 3 FRGC01 Baie du Mont-Saint-Michel: centre baie 3 FRGC03 Rance - Fresnaye 1 FRGC03 Rance - Fresnaye 1 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC06 Perros-Guirec - Large 1 FRGC07 Paimpol - Perros-Guirec 1 FRGC10	FRHC15	Côte Fleurie	3
FRHC12 Côte de Nacre Ouest 3 FRHC11 Côte du Bessin 3 FRHC10 Baie des Veys 3 FRHC09 Anse de Saint-Vaast la Hougue 3 FRHC08 Barfleur 1 FRHC08 Barfleur 1 FRHC07 Cap Levy - Gatteville 1 FRHC060 Rade de Cherbourg 1 FRHC60 Rade de Cherbourg 1 FRHC04 Cap de Carteret - Cap de la Hague 1 FRHC03 Ouest Cotentin 3 FRHC01 Archipel Chausey 3 FRHC02 Baie du Mont-Saint-Michel: centre baie 3 FRGC01 Baie du Mont-Saint-Michel: centre baie 3 FRGC03 Rance - Fresnaye 1 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC06 Perros-Guirec - Large 1 FRGC07 Paimpol - Perros-Guirec 1 FRGC10 Baie - Lannion 1 FRGC18	FRHC14	Baie de Caen	3
FRHC11 Côte du Bessin 3 FRHC10 Baie des Veys 3 FRHC09 Anse de Saint-Vaast la Hougue 3 FRHC08 Barfleur 1 FRHC08 Barfleur 1 FRHC07 Cap Levy - Gatteville 1 FRHC60 Rade de Cherbourg 1 FRHC60 Rade de Cherbourg 1 FRHC04 Cap de Carteret - Cap de la Hague 1 FRHC03 Ouest Cotentin 3 FRHC01 Archipel Chausey 3 FRHC02 Baie du Mont-Saint-Michel: centre baie 3 FRGC01 Baie du Mont-Saint-Michel 3 FRGC03 Rance - Fresnaye 1 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC07 Paimpol - Perros-Guirec 1 FRGC08 Perros-Guirec - Large 1 FRGC10 Baie - Morlaix 3 FRGC11 Baie - Morlaix 3 FRGC18 Iroise -	FRHC13	Côte de Nacre Est	3
FRHC10 Baie des Veys 3 FRHC09 Anse de Saint-Vaast la Hougue 3 FRHC08 Barfleur 1 FRHC07 Cap Levy - Gatteville 1 FRHC60 Rade de Cherbourg 1 FRHC60 Rade de Cherbourg 1 FRHC04 Cap de Carteret - Cap de la Hague 1 FRHC03 Ouest Cotentin 3 FRHC01 Archipel Chausey 3 FRHC02 Baie du Mont-Saint-Michel: centre baie 3 FRGC01 Baie du Mont-Saint-Michel 3 FRGC03 Rance - Fresnaye 1 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC07 Paimpol - Perros-Guirec 1 FRGC08 Perros-Guirec - Large 1 FRGC10 Baie - Lannion 1 FRGC11 Baie - Morlaix 3 FRGC18 Iroise - Large 1 FRGC16 Rade - Brest 3 FRGC20 Baie	FRHC12	Côte de Nacre Ouest	3
FRHC09 Anse de Saint-Vaast la Hougue 3 FRHC08 Barfleur 1 FRHC07 Cap Levy - Gatteville 1 FRHC60 Rade de Cherbourg 1 FRHC60 Rade de Cherbourg 1 FRHC04 Cap de Carteret - Cap de la Hague 1 FRHC03 Ouest Cotentin 3 FRHC01 Archipel Chausey 3 FRHC02 Baie du Mont-Saint-Michel: centre baie 3 FRGC01 Baie du Mont-Saint-Michel: centre baie 3 FRGC03 Rance - Fresnaye 1 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC07 Paimpol - Perros-Guirec 1 FRGC08 Perros-Guirec - Large 1 FRGC10 Baie - Lannion 1 FRGC11 Baie - Morlaix 3 FRGC18 Iroise - Large 1 FRGC18 Iroise - Large 1 FRGC20 Baie - Douarnenez 1 FRGC28 <td>FRHC11</td> <td>Côte du Bessin</td> <td>3</td>	FRHC11	Côte du Bessin	3
FRHC08 Barfleur 1 FRHC07 Cap Levy - Gatteville 1 FRHC60 Rade de Cherbourg 1 FRHC60 Rade de Cherbourg 1 FRHC04 Cap de Carteret - Cap de la Hague 1 FRHC03 Ouest Cotentin 3 FRHC01 Archipel Chausey 3 FRHC02 Baie du Mont-Saint-Michel: centre baie 3 FRGC01 Baie du Mont-Saint-Michel 3 FRGC03 Rance - Fresnaye 1 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC07 Paimpol - Perros-Guirec 1 FRGC08 Perros-Guirec - Large 1 FRGC10 Baie - Lannion 1 FRGC11 Baie - Morlaix 3 FRGC18 Iroise - Large 1 FRGC18 Iroise - Large 1 FRGC20 Baie - Douarnenez 1 FRGC26 Baie - Audierne 1 FRGC34 Lorient - Gr	FRHC10	Baie des Veys	3
FRHC07 Cap Levy - Gatteville 1 FRHC60 Rade de Cherbourg 1 FRHC04 Cap de Carteret - Cap de la Hague 1 FRHC03 Ouest Cotentin 3 FRHC01 Archipel Chausey 3 FRHC02 Baie du Mont-Saint-Michel: centre baie 3 FRGC01 Baie du Mont-Saint-Michel 3 FRGC03 Rance - Fresnaye 1 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC07 Paimpol - Perros-Guirec 1 FRGC08 Perros-Guirec - Large 1 FRGC10 Baie - Lannion 1 FRGC11 Baie - Morlaix 3 FRGC12 Baie - Morlaix 3 FRGC16 Rade - Brest 3 FRGC20 Baie - Douarnenez 1 FRGC26 Baie - Audierne 1 FRGC28 Concarneau - Large 1 FRGC34 Lorient - Groix 1 FRGC35 Baie d	FRHC09	Anse de Saint-Vaast la Hougue	3
FRHC60 Rade de Cherbourg 1 FRHC04 Cap de Carteret - Cap de la Hague 1 FRHC03 Ouest Cotentin 3 FRHC01 Archipel Chausey 3 FRHC02 Baie du Mont-Saint-Michel: centre baie 3 FRGC01 Baie du Mont-Saint-Michel 3 FRGC03 Rance - Fresnaye 1 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC07 Paimpol - Perros-Guirec 1 FRGC08 Perros-Guirec - Large 1 FRGC10 Baie - Lannion 1 FRGC11 Baie - Morlaix 3 FRGC18 Iroise - Large 1 FRGC18 Iroise - Large 1 FRGC20 Baie - Douarnenez 1 FRGC26 Baie - Audierne 1 FRGC28 Concarneau - Large 1 FRGC34 Lorient - Groix 1 FRGC35 Baie d'Etel 3 FRGC42 Belle-Ile	FRHC08	Barfleur	1
FRHC04 Cap de Carteret - Cap de la Hague 1 FRHC03 Ouest Cotentin 3 FRHC01 Archipel Chausey 3 FRHC02 Baie du Mont-Saint-Michel: centre baie 3 FRGC01 Baie du Mont-Saint-Michel 3 FRGC03 Rance - Fresnaye 1 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC07 Paimpol - Perros-Guirec 1 FRGC08 Perros-Guirec - Large 1 FRGC10 Baie - Lannion 1 FRGC11 Baie - Morlaix 3 FRGC18 Iroise - Large 1 FRGC16 Rade - Brest 3 FRGC20 Baie - Douarnenez 1 FRGC26 Baie - Audierne 1 FRGC28 Concarneau - Large 1 FRGC34 Lorient - Groix 1 FRGC35 Baie d'Etel 3 FRGC42 Belle-Ile 1	FRHC07	Cap Levy - Gatteville	1
FRHC03 Ouest Cotentin 3 FRHC01 Archipel Chausey 3 FRHC02 Baie du Mont-Saint-Michel: centre baie 3 FRGC01 Baie du Mont-Saint-Michel 3 FRGC03 Rance - Fresnaye 1 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC07 Paimpol - Perros-Guirec 1 FRGC08 Perros-Guirec - Large 1 FRGC10 Baie - Lannion 1 FRGC11 Baie - Morlaix 3 FRGC18 Iroise - Large 1 FRGC18 Iroise - Large 1 FRGC19 Baie - Douarnenez 1 FRGC20 Baie - Douarnenez 1 FRGC26 Baie - Audierne 1 FRGC28 Concarneau - Large 1 FRGC34 Lorient - Groix 1 FRGC35 Baie d'Etel 3 FRGC42 Belle-Ile 1	FRHC60	Rade de Cherbourg	1
FRHC01 Archipel Chausey 3 FRHC02 Baie du Mont-Saint-Michel: centre baie 3 FRGC01 Baie du Mont-Saint-Michel 3 FRGC03 Rance - Fresnaye 1 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC07 Paimpol - Perros-Guirec 1 FRGC08 Perros-Guirec - Large 1 FRGC10 Baie - Lannion 1 FRGC11 Baie - Morlaix 3 FRGC18 Iroise - Large 1 FRGC16 Rade - Brest 3 FRGC20 Baie - Douarnenez 1 FRGC26 Baie - Audierne 1 FRGC28 Concarneau - Large 1 FRGC34 Lorient - Groix 1 FRGC35 Baie d'Etel 3 FRGC42 Belle-Ile 1	FRHC04	Cap de Carteret - Cap de la Hague	1
FRHC02 Baie du Mont-Saint-Michel: centre baie 3 FRGC01 Baie du Mont-Saint-Michel 3 FRGC03 Rance - Fresnaye 1 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC07 Paimpol - Perros-Guirec 1 FRGC08 Perros-Guirec - Large 1 FRGC10 Baie - Lannion 1 FRGC11 Baie - Morlaix 3 FRGC18 Iroise - Large 1 FRGC16 Rade - Brest 3 FRGC20 Baie - Douarnenez 1 FRGC26 Baie - Audierne 1 FRGC28 Concarneau - Large 1 FRGC34 Lorient - Groix 1 FRGC35 Baie d'Etel 3 FRGC42 Belle-Ile 1	FRHC03	Ouest Cotentin	3
FRGC01 Baie du Mont-Saint-Michel 3 FRGC03 Rance - Fresnaye 1 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC07 Paimpol - Perros-Guirec 1 FRGC08 Perros-Guirec - Large 1 FRGC10 Baie - Lannion 1 FRGC11 Baie - Morlaix 3 FRGC18 Iroise - Large 1 FRGC16 Rade - Brest 3 FRGC20 Baie - Douarnenez 1 FRGC26 Baie - Audierne 1 FRGC28 Concarneau - Large 1 FRGC34 Lorient - Groix 1 FRGC35 Baie d'Etel 3 FRGC42 Belle-Ile 1	FRHC01	Archipel Chausey	3
FRGC03 Rance - Fresnaye 1 FRGC05 Fond Baie de Saint-Brieuc 3 FRGC07 Paimpol - Perros-Guirec 1 FRGC08 Perros-Guirec - Large 1 FRGC10 Baie - Lannion 1 FRGC11 Baie - Morlaix 3 FRGC18 Iroise - Large 1 FRGC16 Rade - Brest 3 FRGC20 Baie - Douarnenez 1 FRGC26 Baie - Audierne 1 FRGC28 Concarneau - Large 1 FRGC34 Lorient - Groix 1 FRGC35 Baie d'Etel 3 FRGC42 Belle-Ile 1	FRHC02	Baie du Mont-Saint-Michel: centre baie	3
FRGC05 Fond Baie de Saint-Brieuc 3 FRGC07 Paimpol - Perros-Guirec 1 FRGC08 Perros-Guirec - Large 1 FRGC10 Baie - Lannion 1 FRGC11 Baie - Morlaix 3 FRGC18 Iroise - Large 1 FRGC16 Rade - Brest 3 FRGC20 Baie - Douarnenez 1 FRGC26 Baie - Audierne 1 FRGC28 Concarneau - Large 1 FRGC34 Lorient - Groix 1 FRGC35 Baie d'Etel 3 FRGC42 Belle-Ile 1	FRGC01	Baie du Mont-Saint-Michel	3
FRGC07 Paimpol - Perros-Guirec 1 FRGC08 Perros-Guirec - Large 1 FRGC10 Baie - Lannion 1 FRGC11 Baie - Morlaix 3 FRGC18 Iroise - Large 1 FRGC16 Rade - Brest 3 FRGC20 Baie - Douarnenez 1 FRGC26 Baie - Audierne 1 FRGC28 Concarneau - Large 1 FRGC34 Lorient - Groix 1 FRGC35 Baie d'Etel 3 FRGC42 Belle-Ile 1	FRGC03	Rance - Fresnaye	1
FRGC08 Perros-Guirec - Large 1 FRGC10 Baie - Lannion 1 FRGC11 Baie - Morlaix 3 FRGC18 Iroise - Large 1 FRGC16 Rade - Brest 3 FRGC20 Baie - Douarnenez 1 FRGC26 Baie - Audierne 1 FRGC28 Concarneau - Large 1 FRGC34 Lorient - Groix 1 FRGC35 Baie d'Etel 3 FRGC42 Belle-Ile 1	FRGC05	Fond Baie de Saint-Brieuc	3
FRGC10 Baie - Lannion 1 FRGC11 Baie - Morlaix 3 FRGC18 Iroise - Large 1 FRGC16 Rade - Brest 3 FRGC20 Baie - Douarnenez 1 FRGC26 Baie - Audierne 1 FRGC28 Concarneau - Large 1 FRGC34 Lorient - Groix 1 FRGC35 Baie d'Etel 3 FRGC42 Belle-Ile 1	FRGC07	Paimpol - Perros-Guirec	1
FRGC11 Baie - Morlaix 3 FRGC18 Iroise - Large 1 FRGC16 Rade - Brest 3 FRGC20 Baie - Douarnenez 1 FRGC26 Baie - Audierne 1 FRGC28 Concarneau - Large 1 FRGC34 Lorient - Groix 1 FRGC35 Baie d'Etel 3 FRGC42 Belle-Ile 1	FRGC08	Perros-Guirec - Large	1
FRGC18 Iroise - Large 1 FRGC16 Rade - Brest 3 FRGC20 Baie - Douarnenez 1 FRGC26 Baie - Audierne 1 FRGC28 Concarneau - Large 1 FRGC34 Lorient - Groix 1 FRGC35 Baie d'Etel 3 FRGC42 Belle-Ile 1	FRGC10	Baie - Lannion	1
FRGC16 Rade - Brest 3 FRGC20 Baie - Douarnenez 1 FRGC26 Baie - Audierne 1 FRGC28 Concarneau - Large 1 FRGC34 Lorient - Groix 1 FRGC35 Baie d'Etel 3 FRGC42 Belle-Ile 1	FRGC11	Baie - Morlaix	3
FRGC20 Baie - Douarnenez 1 FRGC26 Baie - Audierne 1 FRGC28 Concarneau - Large 1 FRGC34 Lorient - Groix 1 FRGC35 Baie d'Etel 3 FRGC42 Belle-Ile 1	FRGC18	Iroise - Large	1
FRGC26 Baie - Audierne 1 FRGC28 Concarneau - Large 1 FRGC34 Lorient - Groix 1 FRGC35 Baie d'Etel 3 FRGC42 Belle-Ile 1	FRGC16	Rade - Brest	3
FRGC28 Concarneau - Large 1 FRGC34 Lorient - Groix 1 FRGC35 Baie d'Etel 3 FRGC42 Belle-Ile 1	FRGC20	Baie - Douarnenez	1
FRGC34 Lorient - Groix 1 FRGC35 Baie d'Etel 3 FRGC42 Belle-Ile 1	FRGC26	Baie - Audierne	1
FRGC35 Baie d'Etel 3 FRGC42 Belle-Ile 1	FRGC28	Concarneau - Large	1
FRGC42 Belle-Ile 1	FRGC34	Lorient - Groix	1
	FRGC35	Baie d'Etel	3
FRGC36 Baie - Quiberon 1	FRGC42	Belle-Ile	1
	FRGC36	Baie - Quiberon	1

FRGC39	Golfe - Morbihan	3
FRGC45	Baie Vilaine - Large	3
FRGC44	Baie Vilaine - Côte	3
FRGC46	Loire Large	3
FRGC48	Baie - Bourgneuf	3
FRGC47	Ile d Yeu	1
FRGC50	Vendée - Les Sables	3
FRGC53	Pertuis Breton	3
FRFC01	Côte Nord-Est de l'Île d'Oléron	3
FRFC02	Pertuis Charentais	3
FRFC07	Arcachon aval	3
FRFC06	Arcachon amont	3
FRFC08	Côte Landaise	3
FRFC09	Lac d'Hossegor	1
FRFC11	Côte Basque	1
FRDC01	Frontière espagnole - Racou Plage	1
FRDC02a	Racou Plage - Embouchure de l'Aude	3
FRDC02c	Cap d´Agde	3
FRDC02f	Frontignan - Pointe de l'Espiguette	3
FRDC04	Golfe de Fos	1
FRDC05	Côte Bleue	1
FRDC06b	Pointe d'Endoume - Cap Croisette et îles du Frioul	1
FRDC07a	iles de Marseille hors Frioul	1
FRDC07b	Cap croisette - Bec de l'Aigle	1
FRDC07e	Ilot Pierreplane - Pointe du Gaou	1
FRDC07g	Cap Cepet - Cap de Carqueiranne	1
FRDC07h	Iles du Soleil	1
FRDC08a	Pointe des Issambres - Ouest Fréjus	1
FRDC08d	Ouest Fréjus - Pointe de la Galère	1
FRDC09a	Cap d'Antibes - Sud port Antibes	1
FRDC09b	Port Antibes - Port de commerce de Nice	1
FRDC09d	Cap d'Antibes - Cap Ferrat	1
FRDC10c	Monte Carlo- Frontière italienne	1
FREC01ab	Pointe Palazzu - Sud Nonza	1
FREC02ab	Cap Est de la Corse	1
FREC02d	Plaine Orientale	1
FREC03ad	Littoral Sud Est de la Corse	1
FREC03eg	Littoral Sud Ouest de la Corse	1
FREC04ac	Pointe Senetosa - Pointe Palazzu	1

ANNEXE 7

MÉTHODOLOGIE D'ATTRIBUTION D'UN POTENTIEL ÉCOLOGIQUE POUR LES MASSES D'EAU FORTEMENT MODIFIÉES (MEFM) ET ARTIFICIELLES (MEA) LITTORALES

En l'état actuel des connaissances, le préfet coordonnateur de bassin évalue la classe de potentiel écologique des masses d'eau fortement modifiées et artificielles littorales, au regard des définitions normatives de l'annexe 1 ci-dessus, en s'appuyant sur les connaissances actuelles et le dire d'expert.

ANNEXE 8

ÉVALUATION DE L'ÉTAT CHIMIQUE DES EAUX

1. <u>Liste des polluants concernés et normes de qualité environnementales correspondantes</u>

Pour les substances numérotées de 34 à 45, les NQE prennent effet à compter du 22 décembre 2018.

Pour les substances numérotées 2, 5, 15, 20, 22, 23 et 28 pour lesquelles des NQE révisées sont fixées à compter du 22 décembre 2015, le bon état chimique doit être atteint avant le 22 décembre 2021.

Pour les substances nouvellement identifiées numérotées de 34 à 45, le bon état chimique doit être atteint avant le 22 décembre 2027.

Les substances indiquées en gras sont les substances dangereuses prioritaires.

MA: moyenne annuelle.

CMA: concentration maximale admissible. SDP: substance dangereuse prioritaires.

SO: sans objet.

Unités : eau [µg/l] ; biote [µg/kg pf].

Tableau 87 : liste des polluants et normes de qualité environnementales correspondantes

No	Code Sandre	Nom de la substance	Numéro CAS (1)	NQE-MA (2) Eaux de surface intérieures (3)	NQE-MA (2) Eaux côtières et de transition	NQE- CMA (4) Eaux de surface intérieure s (3)	NQE- CMA (4) Eaux côtières et de transition	NQE Biote (12)	NQE mollusques (17)
(1)	1101	Alachlore	15972-60- 8	0,3	0,3	0,7	0,7		
(2)	1458	Anthracène	120-12-7	0,1	0,1	0,1	0,1		173
(3)	1107	Atrazine	1912-24-9	0,6	0,6	2,0	2,0		
(4)	1114	Benzène	71-43-2	10	8	50	50		
(5)	7705	Diphényléthers bromés (5)	32534-81- 9			0,14	0,014	0,0085	
(6)	1388	Cadmium et ses composés (suivant les classes de dureté de l'eau) (6)	7440-43-9	≤ 0,08 (classe 1) 0,08 (classe 2) 0,09 (classe 3) 0,15 (classe 4) 0,25 (classe 5)	0,2	≤ 0,45 (classe 1) 0,45 (classe 2) 0,6 (classe 3) 0,9 (classe 4) 1,5 (classe 5)	≤0,45 (classe 1) 0,45 (classe 2) 0,6 (classe 3) 0,9 (classe 4) 1,5 (classe 5)		572
(6 <i>bis</i>)	1276	Tétrachlorure de carbone (7)	56-23-5	12	12	sans objet	sans objet		
(7)	1955	Chloroalcanes C10-13 (8)	85535-84- 8	0,4	0,4	1,4	1,4	16600	
(8)	1464	Chlorfenvinphos	470-90-6	0,1	0,1	0,3	0,3		30,9
(9)	1083	Chlorpyrifos (éthylchlorpyri fos)	2921-88-2	0,03	0,03	0,1	0,1		10,32

No	Code Sandre	Nom de la substance	Numéro CAS (1)	NQE-MA (2) Eaux de surface intérieures (3)	NQE-MA (2) Eaux côtières et de transition	NQE- CMA (4) Eaux de surface intérieure s (3)	NQE- CMA (4) Eaux côtières et de transition	NQE Biote (12)	NQE mollusques (17)
(9 bis)	5534	Pesticides cyclodiènes: Aldrine (7) Dieldrine (7) Endrine (7) Isodrine (7)	309-00-2 60-57-1 72-20-8 465-73-6	$\Sigma = 0.01$	$\Sigma = 0,005$	sans objet	sans objet		
(9	7146	DDT total (7), (9)	sans objet	0,025	0,025	sans objet	sans objet		1282
ter)	1148	para-para- DDT (7)	50-29-3	0,01	0,01	sans objet	sans objet		
(10)	1161	1,2-dichloroéthane	107-06-2	10	10	sans objet	sans objet		
(11)	1168	Dichlorométhane	75-09-2	20	20	sans objet	sans objet		
(12)	6616	Di(2-ethyl hexyle)- phthalate (DEHP)	117-81-7	1,3	1,3	sans objet	sans objet	3200	2920
(13)	1177	Diuron	330-54-1	0,2	0,2	1,8	1,8		
(14)	1743	Endosulfan	115-29-7	0,005	0,0005	0,01	0,004		
(15)	1191	Fluoranthène	206-44-0	0,0063	0,0063	0,12	0,12	30	
(16)	1199	Hexachlorobenzène	118-74-1			0,05	0,05	10	
(17)	1652	Hexachlorobutadiène	87-68-3			0,6	0,6	55	
(18)	5537	Hexachlorocy- clohexane	608-73-1	0,02	0,002	0,04	0,02		0,28
(19)	1208	Isoproturon	34123-59- 6	0,3	0,3	1,0	1,0		
(20)	1382	Plomb et ses composés	7439-92-1	1,2 (13)	1,3	14	14		
(21)	1387	Mercure et ses composés	7439-97-6			0,07	0,07	20	
(22)	1517	Naphtalène	91-20-3	2	2	130	130		214
(23)	1386	Nickel et ses composés	7440-02-0	4 (13)	8,6	34	34		
(24)	1958	Nonylphénols (4-nonylphénol)	84852-15- 3	0,3	0,3	2,0	2,0		344
(25)	1959	Octylphénols (4- (1,1',3,3'- tétraméthyl- butyl)-phénol)	140-66-9	0,1	0,01	sans objet	sans objet		2,29
(26)	1888	Pentachlorobenzène	608-93-5	0,007	0,0007	sans objet	sans objet	367	2,29
(27) (28)	1235	Pentachlorophénol Hydrocarbures	87-86-5 sans objet	0,4 sans objet	0,4 sans objet	1 sans objet	1 sans objet		41,6
(20)		aromatiques polycycliques (HAP) (11)	sans seget	Sams cojet	sans objec	sans cojet	sans objec		
	1115 1116	Benzo(a)pyrène Benzo(b)fluoranthène	50-32-8 205-99-2	1,7 × 10–4 voir note 11	1,7 × 10–4 voir note	0,27 0,017	0,027 0,017	5 voir note 11	
	1117	Benzo(k)fluoranthène	207-08-9	voir note 11	voir note	0,017	0,017	voir note 11	
	1118	Benzo(g,h,i)perylène	191-24-2	voir note 11	voir note	8,2 × 10–3	8,2 × 10–4	voir note 11	
	1204	Indeno(1,2,3- cd)- pyrène	193-39-5	voir note 11	voir note	sans objet	sans objet	voir note 11	
(29)	1263	Simazine	122-34-9	1	1	4	4		
(29 <i>bis</i>)	1272	Tétrachloroéthylène (7)	127-18-4	10	10	sans objet	sans objet		
(29 ter)	1286	Trichloroethylène (7)	79-01-6	10	10	sans objet	sans objet		
(30)	2879	Composés du tributylétain (tributylétain- cation)	36643-28- 4	0,0002	0,0002	0,0015	0,0015		
(31)	1774	Trichlorobenzène	12002-48-	0,4	0,4	sans objet	sans objet		100,4

No	Code Sandre	Nom de la substance	Numéro CAS (1)	NQE-MA (2) Eaux de surface intérieures (3)	NQE-MA (2) Eaux côtières et de transition	NQE- CMA (4) Eaux de surface intérieure	NQE- CMA (4) Eaux côtières et de	NQE Biote (12)	NQE mollusques (17)
			1			s (3)	transition		
(32)	1135	Trichlorométhane	67-66-3	2,5	2,5	sans objet	sans objet		
(33)	1289	Trifluraline	1582-09-8	0,03	0,03	sans objet	sans objet		116
(34)	1172	Dicofol	115-32-2	1,3 × 10–3	3,2 × 10–5	sans objet (10)	sans objet (10)	33	
(35)	6561	Acide perfluorooctanesulfon ique et ses dérivés (perfluorooctanesulfo nate PFOS)	45298-90- 6	6,5 × 10–4	1,3 × 10–4	36	7,2	9,1	
(36)	2028	Quinoxyfène	124495- 18-7	0,15	0,015	2,7	0,54		
(37)	7707	Dioxines et composés de type dioxine (15)				sans objet	sans objet	Somme de PCDD + PCDF + PCB-TD 0,0065 µg.kg-1 TEQ (14)	
(38)	1688	Aclonifène	74070-46- 5	0,12	0,012	0,12	0,012		
(39)	1119	Bifénox	42576-02-	0,012	0,0012	0,04	0,004		
(40)	1935	Cybutryne	28159-98- 0	0,0025	0,0025	0,016	0,016		
(41)	1140	Cyperméthrine	52315-07- 8	8 × 10–5	8 × 10–6	6 × 10–4	6 × 10–5		
(42)	1170	Dichlorvos	62-73-7	6 × 10–4	6 × 10–5	7 × 10–4	7 × 10–5		
(43)	7128	Hexabromocyclododé cane (HBCDD) (16)		0,0016	0,0008	0,5	0,05	167	
(44)	7706	Heptachlore et époxyde d'hep- tachlore	76-44-8/ 1024-57-3	2 × 10–7	1 × 10–8	3 × 10–4	3 × 10–5	6,7 × 10–3	
(45)	1269	Terbutryne	886-50-0	0,065	0,0065	0,34	0,034		

- (1) CAS: Chemical Abstracts Service.
- (2) Ce paramètre est la norme de qualité environnementale exprimée en valeur moyenne annuelle (NQE-MA). Sauf indication contraire, il s'applique à la concentration totale de tous les isomères.
- (3) Les eaux de surface intérieures comprennent les rivières et les lacs et les masses d'eau artificielles ou fortement modifiées qui y sont reliées.
- (4) Ce paramètre est la norme de qualité environnementale exprimée en concentration maximale admissible (NQE-CMA). Lorsque les NQE-CMA sont indiquées comme étant "sans objet", les valeurs retenues pour les NQE-MA sont considérées comme assurant une protection contre les pics de pollution à court terme dans les rejets continus, dans la mesure où elles sont nettement inférieures à celles définies sur la base de la toxicité aiguë.
- (5) Pour le groupe de substances prioritaires dénommé "Diphényléthers bromés" (n°5), les NQE renvoient à la somme des concentrations des congénères portant les numéros 28, 47, 99, 100, 153 et 154.
- (6) Pour le cadmium et ses composés (n° 6), les valeurs retenues pour les NQE varient en fonction de la dureté de l'eau telle que définie suivant les cinq classes suivantes: classe 1: < 40 mg CaCO 3 /l; classe 2: 40 à < 50 mg CaCO 3 /l; classe 3: 50 à < 100 mg CaCO 3 /l; classe 4: 100 à < 200 mg CaCO 3 /l et classe 5: \geq 200 mg CaCO 3 /l.
- (7) Cette substance n'est pas une substance prioritaire mais un des autres polluants pour lesquels les NQE sont identiques à celles définies dans la législation qui s'appliquait avant le 13 janvier 2009.
- (8) Aucun paramètre indicatif n'est prévu pour ce groupe de substances. Le ou les paramètres indicatifs doivent être déterminés par la méthode d'analyse.
- (9) Le DDT total comprend la somme des isomères suivants: 1,1,1-trichloro-2,2 bis (p-chlorophényl)éthane (n° CAS: 50-29-3; n° UE: 200-024-3); 1,1,1-trichloro-2 (o-chlorophényl)-2-(p-chlorophényl)éthane (n° CAS: 789-02-6; n° UE: 212-332-5); 1,1-dichloro-2,2 bis (p-chlorophényl)éthylène (n° CAS: 72-55-9; n° UE: 200-784-6); et 1,1-dichloro-2,2 bis (p-chlorophényl)éthane (n° CAS: 72-54-8; n° UE: 200-783-0).
- (10) Les informations disponibles ne sont pas suffisantes pour établir une NQE-CMA pour ces substances.
- (11) Pour le groupe de substances prioritaires dénommé "hydrocarbures aromatiques polycycliques (HAP)" (n° 28), la NQE pour le biote et la NQE-MA dans l'eau correspondante se rapportent à la concentration de benzo(a)pyrène, sur la toxicité duquel elles sont fondées. Le benzo(a)pyrène peut être considéré comme un marqueur des autres HAP et, donc, seul le benzo(a)pyrène doit faire l'objet d'une surveillance aux fins de la comparaison avec la NQE pour le biote ou la NQE-MA dans l'eau correspondante.
- (12) Sauf indication contraire, la NQE pour le biote se rapporte aux poissons. En lieu et place, un autre taxon de biote, ou une autre matrice, peut faire l'objet de la surveillance pour autant que la NQE appliquée assure un niveau de protection équivalent. Pour les substances n os 15 (fluoranthène) et 28 (HAP), la NQE pour le biote se rapporte aux crustacés et mollusques. Aux fins de l'évaluation de l'état chimique, la surveillance du fluoranthène et des HAP chez les poissons n'est pas appropriée. Pour la substance n° 37 (dioxines et composés de type dioxine), la NQE pour le biote se rapporte aux poissons, crustacés et mollusques, en conformité avec l'annexe, section 5.3, du règlement (UE) n° 1259/2011 de la Commission du 2 décembre 2011 modifiant le règlement (CE) n° 1881/2006 en ce qui concerne les teneurs maximales en dioxines, en PCB de type dioxine et en PCB autres que ceux de

No	Code	Nom de la substance	Numéro	NQE-MA	NQE-MA	NQE-	NQE-	NQE Biote	NQE
	Sandre		CAS (1)	(2) Eaux de	(2) Eaux	CMA (4)	CMA (4)	(12)	mollusques
				surface	côtières et	Eaux de	Eaux		(17)
				intérieures	de	surface	côtières et		
				(3)	transition	intérieure	de		
						s (3)	transition		

type dioxine des denrées alimentaires (JO L 320 du 3.12.2011, p. 18).

(15) Se rapporte aux composés suivants:

sept dibenzo-p-dioxines polychlorées (PCDD): 2,3,7,8-T4CDD (n° CAS 1746-01-6), 1,2,3,7,8-P5CDD (n° CAS 40321-76-4), 1,2,3,4,7,8-H6CDD (n° CAS 39227-28-6), 1,2,3,6,7,8-H6CDD (n° CAS 57653-85-7), 1,2,3,7,8,9-H6CDD (n° CAS 19408-74-3), 1,2,3,4,6,7,8-H7CDD (n° CAS 35822-46-9), 1,2,3,4,6,7,8,9-O8CDD (n° CAS 3268-87-9); dix dibenzofurannes polychlorés (PCDF): 2,3,7,8-T4CDF (CAS 51207-31-9), 1,2,3,7,8-P5CDF (CAS 57117-41-6), 2,3,4,7,8-P5CDF (CAS 57117-31-4), 1,2,3,4,7,8-H6CDF (CAS 70648-26-9), 1,2,3,6,7,8-H6CDF (CAS 57117-44-9), 1,2,3,7,8,9-H6CDF (CAS 72918-21-9), 2,3,4,6,7,8-H6CDF (CAS 60851-34-5), 1,2,3,4,6,7,8-H7CDF (CAS 67562-39-4), 1,2,3,4,7,8,9-H7CDF (CAS 55673-89-7), 1,2,3,4,6,7,8,9-O8CDF (CAS 39001-02-0)

douze biphényles polychlorés de type dioxine (PCB-TD): 3,3',4,4'-T4CB (PCB 77, n° CAS 32598-13-3), 3,3',4',5-T4CB (PCB 81, n° CAS 70362-50-4), 2,3,3',4,4'-P5CB (PCB 105, n° CAS 32598-14-4), 2,3,4,4',5-P5CB (PCB 114, n° CAS 74472-37-0), 2,3',4,4',5-P5CB (PCB 118, n° CAS 31508-00-6), 2,3',4,4',5'-P5CB (PCB 123, n° CAS 65510-44-3), 3,3',4,4',5-P5CB (PCB 126, n° CAS 57465-28-8), 2,3,3',4,4',5-H6CB (PCB 156, n° CAS 38380-08-4), 2,3,3',4,4',5'-H6CB (PCB 157, n° CAS 69782-90-7), 2,3',4,4',5,5'-H6CB (PCB 167, n° CAS 52663-72-6), 3,3',4,4',5,5'-H6CB (PCB 169, n° CAS 32774-16-6), 2,3,3',4,4',5,5'-H7CB (PCB 189, n° CAS 39635-31-9).

(16) Se rapporte à l'α-hexabromocyclododécane (n° CAS 134237-50-6), au β-Hexabromocyclododécane (n° CAS 134237-51-7) et au γ-hexabromocyclododécane (n° CAS 134237-52-8)..

Lorsqu'elles sont définies, les NQE-MA pour le biote sont à appliquer en priorité. Pour les autres substances et familles de substances, les NQE-MA à appliquer en priorité sont les NQE-MA pour l'eau.

Des NQE en concentration moyenne annuelle pour d'autres matrices ou d'autres taxons de biote que ceux précisés ci-dessus peuvent être appliquées si les conditions suivantes sont réunies :

 les NQE-MA pour la nouvelle matrice choisie ou le nouveau taxon de biote choisi garantissent au moins le même niveau de protection que les NQE-MA précisées dans le tableau ci-dessus.

ET

- la limite de quantification pour la nouvelle matrice choisie ou le nouveau taxon de biote choisi est inférieure à 30 % de la NQE correspondante et l'incertitude de la mesure associée est inférieure ou égale à 50 % (k=2) au niveau de la norme de qualité environnementale correspondante, OU si ces deux conditions sur la limite de quantification et l'incertitude ne sont vérifiées simultanément pour aucune matrice, alors la surveillance est effectuée à l'aide des meilleures techniques disponibles n'entraînant pas de coûts excessifs, et les performances analytiques sur la nouvelle matrice choisie ou le nouveau taxon de biote choisi sont au moins aussi bonnes que sur la matrice précisée le tableau ci-dessus.

Lorsqu'une NQE pour le biote ou les sédiments est utilisée, le respect de la conformité à la NQE en concentration maximale admissible (ci-après NQE-CMA) doit être vérifié au moins dans les cas où un risque potentiel pour ou via l'environnement aquatique résultant d'une exposition aigüe est constaté sur la base de concentrations ou d'émissions mesurées ou estimées dans l'environnement.

Le bon état chimique d'une masse d'eau de surface est atteint pour un polluant lorsque l'ensemble des NQE de ce polluant (NQE en moyenne annuelle et NQE en concentration

⁽¹³⁾ Ces NQE se rapportent aux concentrations biodisponibles des substances.

^(14) PCDD: dibenzo-p-dioxines polychlorées; PCDF: dibenzofurannes polychlorés; PCB-TD: biphényles polychlorés de type dioxine; TEQ: équivalents toxiques conformément aux facteurs d'équivalence toxique 2005 de l'Organisation mondiale de la santé..

⁽¹⁷⁾ Valeurs Guides Environnementales proposées par l'Ifremer pour l'évaluation de l'état chimique des eaux littorales.

maximale admissible le cas échéant) est respecté en tout point de la masse d'eau hors zone de mélange.

2. Évaluation du respect de la norme de qualité pour une substance donnée

Dans l'eau, les normes sont établies en concentration moyenne annuelle et, pour certaines substances, également en concentration maximale admissible.

Les normes s'appliquent sur eau brute (non filtrée), à l'exception des métaux pour lesquels elles se rapportent à la fraction dissoute, obtenue par filtration de l'eau brute à travers un filtre de diamètre de pores 0,45 micromètre ou par tout autre traitement préliminaire équivalent.

Dans le biote et les sédiments, les normes sont établies en concentration moyenne annuelle de poids frais pour le biote et de poids sec pour les sédiments.

Pour les métaux et leurs composés, il est possible de tenir compte lors de l'évaluation des résultats obtenus au regard des NQE:

- de la dureté, du pH ou d'autres paramètres liés à la qualité de l'eau qui affectent la biodisponibilité des métaux, par exemple en utilisant un modèle de calcul de la fraction dissoute biodisponible de type BLM (Biotic Ligand Model) ;
- des concentrations de fonds géochimiques naturelles.

Pour une substance donnée, la norme de qualité environnementale fixée par le présent arrêté est respectée lorsque les normes en concentration moyenne annuelle et en concentration maximale admissible, quand cette dernière est définie et pertinente, sont respectées.

2.1. <u>Respect de la norme de qualité environnementale dans l'eau en concentration</u> moyenne annuelle

Cas des substances individuelles :

La concentration moyenne annuelle est calculée en faisant la moyenne des concentrations obtenues sur une année. Ce calcul n'est réalisé que si au minimum quatre résultats de mesure sont disponibles. En deçà, l'état est considéré comme inconnu.

Une concentration mesurée inférieure à la limite de quantification est remplacée, dans le calcul de la moyenne, par cette limite de quantification divisée par deux.

Lorsque la valeur moyenne calculée est inférieure à la limite de quantification maximale, il est fait référence à la valeur en indiquant "inférieure à la limite de quantification".

Si la limite de quantification maximale est inférieure ou égale à la NQE :

- la norme de qualité est respectée si la valeur moyenne calculée est inférieure ou égale à la NQE,
- la norme de qualité environnementale n'est pas respectée si la valeur moyenne calculée est supérieure à la NQE.

Si la limite de quantification maximale est supérieure à la NQE :

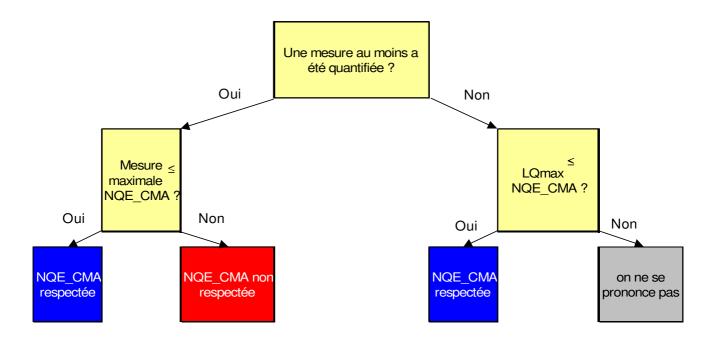
- la norme de qualité n'est pas respectée si la valeur moyenne calculée est supérieure ou égale à la limite de quantification,
- le résultat pour la substance n'est pas pris en compte dans l'évaluation de l'état chimique global de la masse d'eau sinon

Cas des familles de substances :

Les concentrations de chaque substance sont sommées pour chaque prélèvement ; la concentration moyenne annuelle pour la famille est la moyenne de ces sommes.

Les concentrations mesurées inférieures à la limite de quantification des substances individuelles (à savoir chaque substance de la famille, chaque isomère, métabolite, produit de réaction ou de dégradation) sont remplacées par zéro. Lorsque la limite de quantification est supérieure à la norme de qualité environnementale, le respect de la norme est inconnu si la concentration moyenne annuelle est inférieure à la limite de quantification, la norme est non respectée sinon. Dans le cas où la limite de quantification est inférieure à la norme de qualité environnementale, la norme est respectée quand la concentration moyenne annuelle lui est inférieure, sinon elle ne l'est pas.

Ce calcul n'est réalisé que si au minimum quatre résultats de mesure par substance sont disponibles.


2.2. <u>Respect de la norme de qualité environnementale dans l'eau en concentration</u> maximale admissible

Lorsque le paramètre a été quantifié au moins une fois au cours de l'année⁴, on compare la concentration maximale mesurée dans l'année à la NQE-CMA :

- si elle lui est supérieure, la norme n'est pas respectée,
- inversement, si elle lui est inférieure ou égale, la NQE-CMA est respectée.

Dans les cas où le paramètre n'est jamais quantifié au cours de l'année on compare la NQE-CMA à la limite de quantification maximale du laboratoire pour analyser ce paramètre au cours de l'année (LQ_max) :

- lorsque la LQ_max est inférieure ou égale à la NQE-CMA, la norme est respectée,
- lorsque la LQ_max est supérieure à la NQE-CMA on ne se prononce pas.

2.3. Respect de la norme de qualité environnementale dans le biote

La moyenne des valeurs mesurées sur l'ensemble du cycle est calculée et comparée à la norme de qualité environnementale.

Les règles liées aux limites de quantification et à la comparaison à la NQE et exprimées dans le paragraphe 2.1. s'appliquent.

Pour les paramètres correspondant à des groupes de substances, si l'une au moins des substances du paramètre a été quantifiée au cours de l'année.

ANNEXE 9

UTILISATION DES DONNÉES ET OUTILS DE LA SURVEILLANCE POUR L'ÉVALUATION DE L'ÉTAT DES MASSES D'EAUX DE SURFACE

1. Origine

Pour évaluer l'état des masses d'eau de surface, on utilise l'ensemble des données disponibles et validées acquises non seulement à partir des réseaux établis dans le cadre de l'application de l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux en application de l'article R. 212-22 du code de l'environnement, mais aussi celles issues d'autres réseaux, dès lors que :

- pour les éléments de qualité de l'état écologique hors polluants spécifiques de l'état écologique : les sites d'évaluation sont représentatifs de l'état de la masse d'eau concernée⁵ ;
- pour les polluants de l'état chimique et les polluants spécifiques de l'état écologique : les sites d'évaluation sont situés en dehors de la zone de mélange,

et que

- les méthodes utilisées pour le contrôle des éléments de qualité, paramètres ou groupes de paramètres sont conformes aux préconisations de l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux en application de l'article R. 212-22 du code de l'environnement⁶.

En ce qui concerne les éléments de qualité de l'état écologique hors polluants spécifiques de l'état écologique, un site d'évaluation est représentatif de l'état d'une masse d'eau dans son ensemble, vis-à-vis de sa typologie naturelle et de l'incidence des pressions anthropiques qui s'y exercent. L'état évalué doit en effet refléter la situation dominante observée à l'échelle de la masse d'eau et non pas les incidences locales de pressions sans incidences sur le fonctionnement global de la masse d'eau. Cela signifie que le site d'évaluation :

- est représentatif des caractéristiques typologiques naturelles générales de la masse d'eau indiquées dans l'arrêté du 12 janvier 2010 relatif aux méthodes et aux critères à mettre en œuvre pour délimiter et classer les masses d'eau et dresser l'état des lieux, prévu à l'article R. 212-5 du code de l'environnement ;
- est situé en dehors de zones de mélange de rejets ponctuels ;
- est situé en dehors de singularités morphologiques d'origine anthropique ayant des impacts locaux et sans incidence sur le fonctionnement général de la masse d'eau ;

⁵ A ce titre, les sites visant à contrôler uniquement des pressions (réseaux de suivi de pollutions par exemple) ne doivent pas être pris en compte. Par ailleurs, les sites localisés dans une masse d'eau amont ou aval d'une masse d'eau M peuvent être utilisés pour établir l'état de cette masse d'eau M, dès lors qu'ils sont considérés comme représentatifs de son état.

Les données, notamment biologiques, ainsi acquises sont réputées rendre compte de l'effet global sur l'état de la masse d'eau des éventuelles pressions que celle-ci subit.

- permet de traduire de manière générale, à l'échelle de la masse d'eau, les incidences écologiques et / ou chimiques des éventuelles pressions qui s'exercent sur la masse d'eau.

Dans le cas d'une masse d'eau étendue soumise à des pressions importantes de nature différente, ou à plusieurs pressions ponctuelles distantes, plusieurs sites d'évaluation peuvent être nécessaires pour assurer la représentativité de l'état de la masse d'eau.

2. Chronique

D'une manière générale, l'état est calculé à partir des données de surveillance des dernières années validées et mises à disposition.

Pour évaluer l'état des masses d'eau de surface, on utilise toutes les données disponibles et validées acquises au cours des six dernières années les plus récentes.

Pour les éléments de qualité de l'état écologique des eaux de surface, les chroniques suivantes sont utilisées :

- cours d'eau : trois années consécutives les plus récentes (à défaut de celles-ci, on utilise les données disponibles et validées de la ou des années les plus récentes) ;
- plans d'eau : six dernières années (à défaut de celles-ci, on utilise les données disponibles et validées de la ou des années les plus récentes) ;
- eaux littorales : six années consécutives les plus récentes pour lesquelles on dispose de données validées (à défaut de celles-ci, on utilise les données disponibles et validées de la ou des années les plus récentes).

Le système d'évaluation de l'état des eaux (SEEE) est le système national mettant à disposition les éléments de référence pour le calcul des indicateurs à travers une interface commune d'accès aux algorithmes disponibles à l'adresse suivante : http://www.seee.eaufrance.fr

ANNEXE 10

RÈGLES DE PRISE EN COMPTE DE PLUSIEURS SITES D'ÉVALUATION AU SEIN D'UNE MASSE D'EAU ET RÈGLES D'EXTRAPOLATION SPATIALE

1. Règles de prise en compte de plusieurs sites d'évaluation au sein d'une masse d'eau

1.1. Pour l'évaluation de l'état écologique

Pour les masses d'eau continentales, lorsqu'une masse d'eau étendue est munie de plusieurs sites d'évaluation représentatifs de l'état de la masse d'eau, la classe d'état écologique de la masse d'eau est déterminée par la classe d'état la plus basse de ces sites.

1.2. Pour l'évaluation de l'état chimique

Pour les masses d'eau disposant de plusieurs sites d'évaluation hors zone de mélange, l'état chimique de la masse d'eau correspond :

- à l'état chimique de ces stations lorsqu'ils coïncident ;
- sinon à l'état chimique de la station la plus déclassante.

2. <u>Règles d'extrapolation de l'évaluation de l'état écologique en cas de données manquantes</u>

2.1. État écologique

Pour évaluer l'état écologique d'une masse d'eau, on utilise des données issues des sites d'évaluation conformes aux dispositions de l'annexe 9 ci-dessus.

Lorsque de telles données ne sont pas disponibles <u>pour tout ou partie des éléments de qualité</u> <u>pertinents</u> pour le type de masse d'eau considéré, l'état écologique de la masse d'eau est évalué par l'ensemble des informations et connaissances mobilisables relatives aux pressions et leurs incidences.

Il existe plusieurs types de données exploitables :

- les résultats de modélisation (PEGASE, modèle IRSTEA, etc.);
- les données dites de pression avec leur impact potentiel sur l'état des eaux : il s'agit par exemple de rejets d'un site industriel ou d'un obstacle de type barrage.

Les principes énoncés ci-dessus peuvent se combiner, ils ne sont pas exclusifs et s'appliquent selon la disponibilité des connaissances, des données et des outils. L'objectif est d'aboutir à l'évaluation la plus fine possible de l'état écologique d'une masse d'eau, en exploitant au mieux l'ensemble des données et connaissances disponibles.

2.1.1. Évaluation de l'état écologique des masses d'eau à partir de masses d'eau dans des contextes similaires

Pour les masses d'eau non suivies directement mais faisant partie d'un groupe homogène dans un contexte similaire du point de vue de la typologie et des pressions qui s'y exercent. L'état de ces masses d'eau n'est pas directement évalué avec des données milieux, mais il est estimé, par assimilation, à partir de l'état obtenu avec des données milieux sur des masses d'eau situées dans un contexte similaire. La proportion de masses d'eau dans chaque classe d'état écologique est calculée.

L'état écologique de l'ensemble des masses d'eau non suivies du groupe homogène est déterminé par la classe d'état écologique dominante.

2.1.2. Évaluation de l'état écologique des masses d'eau à partir des outils de modélisation

En l'absence de données issues de la surveillance des milieux, les éléments ou paramètres physico-chimiques soutenant la biologie peuvent être évalués par l'utilisation d'un outil de modélisation.

2.1.3. Évaluation de l'état écologique des masses d'eau à partir de données « pression »

En l'absence de données milieux suffisantes pour attribuer un état à une masse d'eau et dans le cas où il existe des données pressions suffisamment fiables, l'état écologique est évalué sur la base des données pressions disponibles en prenant en compte à la fois les pressions physicochimiques et les pressions hydromorphologiques.

La relation pression-état est appréciée en fonction du nombre de types de pressions identifiés sur la masse d'eau et, le cas échéant, de leur intensité et de leur effet probable sur l'état écologique.

2.1.4. Évaluation de l'état écologique des masses d'eau pour lesquelles il n'y a aucune information

Dans un tel cas, il n'est pas possible d'attribuer un état écologique à la masse d'eau.

2.2. État chimique

Pour évaluer l'état chimique d'une masse d'eau, on utilise des données conformes aux dispositions de l'annexe 9 ci-dessus.

Lorsque de telles données ne sont pas disponibles pour tout ou partie des éléments de qualité pertinents pour le type de masse d'eau considéré, pour les paramètres manquants, il est fait appel à l'ensemble des informations disponibles ou modélisables. On peut par exemple procéder par analogie (regroupement par masses d'eau cohérentes-relation amont/aval), par modélisation des pressions ou encore s'appuyer sur du dire d'expert.

ANNEXE 11

ATTRIBUTION D'UN NIVEAU DE CONFIANCE À L'ÉVALUATION DE L'ÉTAT ÉCOLOGIQUE ET DE L'ÉTAT CHIMIQUE DES MASSES D'EAUX DE SURFACE

Un niveau de confiance est attribué à l'évaluation de l'état écologique et de l'état chimique d'une masse d'eau de surface de la manière suivante.

1. Niveau de confiance de l'état écologique

1.1. Eaux douces de surface

Le niveau de confiance est déterminé globalement pour l'état écologique attribué à chaque masse d'eau, tous éléments de qualité confondus et non pas élément de qualité par élément de qualité.

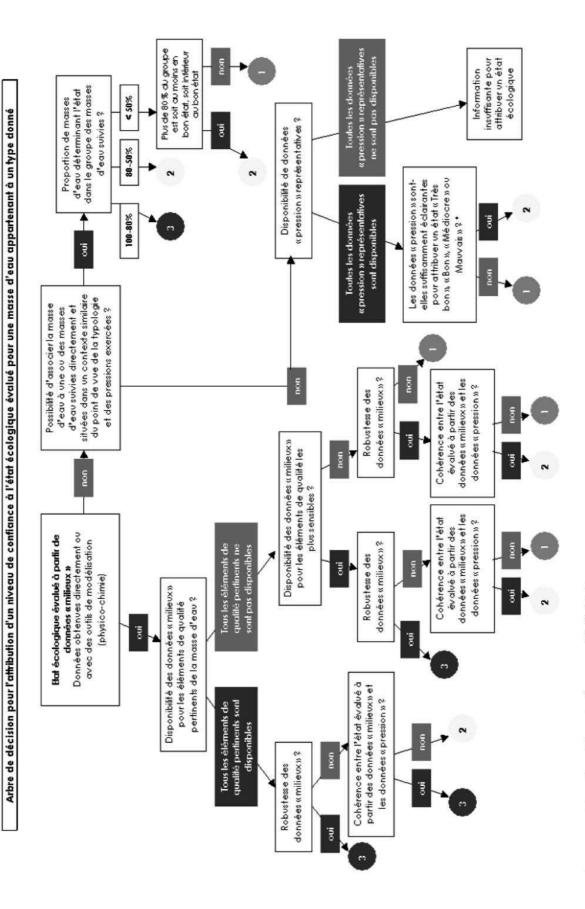
Trois niveaux de confiance sont distingués : 3 (élevé), 2 (moyen) et 1 (faible).

L'état écologique évalué pour une masse d'eau peut être le résultat de la combinaison de différents types et niveaux d'informations (données relatives à l'état du milieu, données relatives aux pressions, données de contexte similaire). Le niveau de confiance attribué est celui considéré comme le plus pertinent au regard des informations utilisées pour l'évaluation. La méthode d'attribution du niveau de confiance est précisée dans l'arbre de décision présenté ci-après.

La disponibilité des éléments de qualité les plus sensibles est à analyser au regard des pressions importantes qui sont connues comme s'exerçant ou susceptibles de s'exercer sur la masse d'eau concernée. Les éléments biologiques les plus sensibles aux pressions s'exerçant sur une masse d'eau sont déterminés conformément aux dispositions de l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux en application de l'article R. 212-22 du code de l'environnement.

La robustesse des données milieux peut s'analyser au regard des critères suivants :

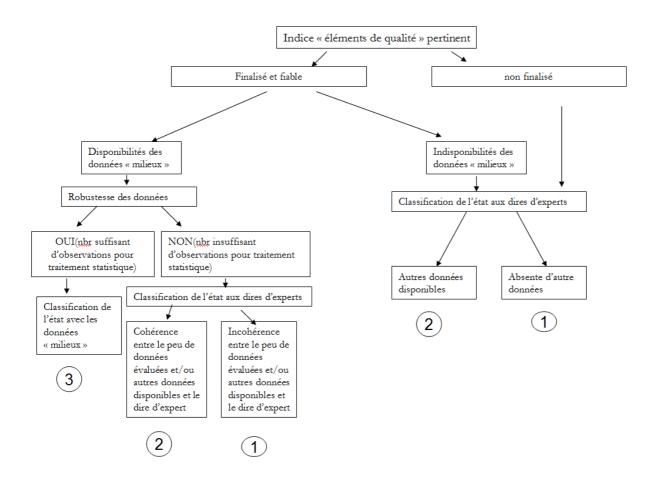
S'il s'agit de données obtenues directement :


- chronique des données utilisées pour évaluer l'état écologique : la règle est d'utiliser l'ensemble des données disponibles pour évaluer l'état écologique. Plus la chronique de données utilisées est importante, plus le niveau de confiance de l'état évalué d'une masse d'eau est élevé⁷ ;
- conditions climatiques exceptionnelles : indépendamment des données atypiques ou non représentatives qui peuvent être observées ponctuellement (et à exclure pour l'évaluation de l'état écologique), des conditions climatiques exceptionnelles sur une période donnée (une année par exemple) peuvent diminuer le niveau de confiance de l'état écologique évalué :

⁷ Dans l'attribution du niveau de confiance, on pourra tenir compte de la cohérence de l'état évalué avec les éventuelle données antérieures disponibles, au-delà de celles requises sur les deux ou six ans pour évaluer l'état d'une masse d'eau cours d'eau ou plan d'eau.

- cohérence des indications fournies par les éléments de qualité biologique et physicochimique : la cohérence des indications fournies par la biologie et la physico-chimie est un facteur permettant d'augmenter le niveau de confiance de l'état écologique évalué. Un écart d'une classe d'état entre éléments de qualité de natures différentes (biologiques, physico-chimiques, hydromorphologiques) ne révèle pas nécessairement une incohérence des indications fournies par les données milieux. Un examen au cas par cas peut permettre, le cas échéant, de s'assurer de la robustesse des données. Un écart de deux classes d'état entre éléments de qualité de natures différentes suffit pour conclure à l'incohérence des indications fournies par les données milieux ;
- niveau d'incertitude associé à la méthode d'évaluation de l'élément de qualité déclassant déterminant l'état écologique de la masse d'eau : plus ce niveau d'incertitude est faible, plus le niveau de confiance de l'état écologique évalué est élevé.

S'il s'agit de données issues de modélisation :


- -domaine de validité du modèle : plus la situation simulée est proche des limites de validité du modèle, moins la robustesse sera élevée. La robustesse sera au contraire maximale dès lors que la simulation sera clairement dans le domaine de validité du modèle :
- -situation atypique ou exceptionnelle : les modèles permettent de contrôler les conditions hydroclimatiques simulées. Lorsque ces conditions sont atypiques ou représentent clairement une situation exceptionnelle, la robustesse des résultats sera considérée comme faible ;
- -données d'entrée : les données d'entrée du modèle (apports, représentation du milieu, etc.) conditionnent grandement la robustesse du résultat. Une faible confiance dans ces données d'entrée entraîne une faible robustesse du résultat de simulation.

* Au regard des dispositions de l'annexe 10, § 2.1.3

1. 2. Eaux littorales

Le niveau de confiance est déterminé globalement pour l'état écologique attribué à une masse d'eau littorale, tous éléments de qualité confondus et non, élément de qualité par élément de qualité. Trois niveaux de confiance sont possibles : 3 (élevé), 2 (moyen) 1 (faible).

2. Niveau de confiance de l'état chimique

Le niveau de confiance attribué à l'état d'une masse d'eau est déterminé dans le tableau 88 cidessous.

Tableau 88 : niveau de confiance attribué à l'état d'une masse d'eau

INFORMATION DISPONIBLE SUR LA MASSE D'EAU		NIVEAU de confiance associé	
Masse d'eau suivie directement	La station est en mauvais état	La station a fait l'objet d'un suivi dans la matrice biote pour les substances disposant d'une NQE dans cette matrice	élevé
		La station n'a pas fait l'objet d'un suivi dans la matrice biote pour les substances disposant d'une NQE dans cette matrice.	moyen
		Et on peut se prononcer sur le bon état d'au moins 80% des 53 polluants incluant benzo(a)pyrène, fluoranthène et DEHP. La station a fait l'objet d'un suivi dans la matrice biote pour les substances disponsant d'une NQE définie dans cette matrice.	élevé
	La station est en bon état	Et on peut se prononcer sur le bon état de 50 à 80% des 53 paramètres incluant benzo(a)pyrène, fluoranthène et DEHP	moyen
		Et on ne peut pas se prononcer au bon état d'au moins 50% des polluants Et on ne peut pas se prononcer pour l'un au moins des polluants benzo(a)pyrène, fluoranthène et DEHP	faible
Masse d'eau non suivie directement	Il est avéré qu'il n'y a pas de pressions anthropiques, la station est considérée en bon état		moyen
	Des méthodes de modélisation de l'état peuvent être utilisées (par regroupement de masses d'eau, modélisation des pressions)		faible
	Aucune information n'est disponible (la modélisation n'est pas possible, la masse d'eau ne peut pas être groupée à des masses d'eau similaires pour lesquels on dispose de l'information))		Information insuffisante pour attribuer un état

La fréquence de suivi de certains paramètres de l'état chimique ayant été revue suite au premier cycle de surveillance, certains bassins ne sont plus dans l'obligation de les suivre. Les fréquences par paramètre et par bassin sont indiquées dans l'arrêté du 25 janvier 2010 modifié établissant le programme de surveillance de l'état des eaux (annexe VI, tableaux 47 pour les cours d'eau et 49 pour les plans d'eau). Dans le cas où un paramètre n'est plus à suivre conformément à cet arrêté, il n'est pas pris en compte dans le calcul de l'indice de confiance.

ANNEXE 12

LES MODALITES DE REPRESENTATION A SUIVRE POUR LA REALISATION DES CARTES D'ETAT ET DE POTENTIEL ECOLOGIQUES ET D'ETAT CHIMIQUE POUR LES MASSES D'EAU DE SURFACE SONT DEFINIES CI-APRES

1. État et potentiel écologiques

La classification de l'état et du potentiel écologiques pour les masses d'eau de surface est représentée à l'aide des couleurs indiquées dans le tableau 89 ci-dessous.

Tableau 89 : code couleur pour la représentation de la classification de l'état des masses d'eau

CLASSIFICATION DE L'ÉTAT ÉCOLOGIQUE	CODE DE COULEUR
Très bon	Bleu (C90M15J20N0)
Bon	Vert (C60M10J50N0)
Moyen	Jaune (C0M10J65N0)
Médiocre	Orange (C0M40J100N0)
Mauvais	Rouge (C0M100J100N0)
Information insuffisante pour attribuer un état	Gris 30 %

Un point noir est ajouté sur la carte pour les masses d'eau ne respectant pas une ou plusieurs des normes de qualité environnementale qui ont été établies pour cette masse d'eau pour des polluants synthétiques et non synthétiques spécifiques de l'état écologique.

CLASSIFICATION DU	CODE DE COULEUR		
POTENTIEL ÉCOLOGIQUE	Masses d'eau artificielles	Masses d'eau fortement modifiées	
Bon et Très bon	Hachures égales en vert (C60M10J50N0) et gris (15 %)	Hachures égales en vert (C60M10J50N0) et gris (45 %)	
Moyen	Hachures égales en jaune (C0M10J65N0) et gris (15 %)	Hachures égales en jaune (C0M10J65N0) et gris (45 %)	
Médiocre	Hachures égales en orange (C0M40J100N0) et gris (15 %)	Hachures égales en orange (C0M40J100N0) et gris (45 %)	
Mauvais	Hachures égales en rouge (C0M100J100N0) et gris (15 %)	Hachures égales en rouge (C0M100J100N0) et gris (45 %)	
Information insuffisante pour attribuer un potentiel	Hachures égales en gris (30 %) et gris (15 %)	Hachures égales en gris (30 %) et gris (45 %)	

Un point noir est ajouté sur la carte pour les masses d'eau ne respectant pas une ou plusieurs des normes de qualité environnementale qui ont été établies pour cette masse d'eau pour des polluants synthétiques et non synthétiques spécifiques de l'état écologique.

Le niveau de confiance de la classification de l'état et du potentiel écologiques pour les masses d'eau de surface est représenté à l'aide des couleurs indiquées dans le tableau 90 ci-dessous.

Tableau 90 : code couleur pour la représentation du niveau de confiance de la classification de l'état et du potentiel écologique des masses d'eau de surface

NIVEAU DE CONFIANCE DE LA CLASSIFICATION de l'état et du potentiel écologiques		
Elevé	Vert clair (C45M0J70N0)	
Moyen	Rose sale (C10M5J30N0)	
Faible	Rose clair (C0M50J25N0)	
information insuffisante	Gris 30 %	

2. État chimique

La classification de l'état chimique pour les masses d'eau de surface est représentée à l'aide des couleurs indiquées dans le tableau 91 ci-dessous.

Tableau 91 : code couleur pour la représentation de la classification de l'état chimique des masses d'eau de surface

Etat chimique		
Bon	Fond: sans; contour: bleu (C90M15J20N0), 2 pt	
Mauvais	Fond: sans; contour: rouge (C0M100J100N0), 2 pt	
Information insuffisante pour attribuer un état	Fond: sans; contour: gris 30%, 2 pt	

Le niveau de confiance de la classification de l'état chimique pour les masses d'eau de surface est représenté à l'aide des couleurs indiquées dans le tableau 92 ci-dessous.

Tableau 92 : code couleur pour la représentation du niveau de confiance de la classification de l'état chimique des masses d'eau de surface

Niveau de confiance de la classification de l'état chimique		
Elevé Vert clair (C45M0J70N0)		
Moyen	Rose sale (C10M5J30N0)	
Faible	Rose clair (C0M50J25N0)	
Pas d'information	Gris 30%	